Сварка стали 10хснд

Сталь 10ХСНД — расшифровка и характеристики

Сварка стали 10хснд

Существует множество промышленных объектов, работающих в особых условиях, например, на берегу моря или за границей полярного круга. Для изготовления таких конструкций нужны материалы с характеристиками стали 10ХСНД.

Химический состав стали

10ХСНД (старое название 10ХСНД-Ш ) относят к классу низколегированных сплавов, предназначенных для сооружения сварных конструкций.

Расшифровка марки стали говорит о том что в состав материала входят такие химические элементы, как:

  • хром — до 0,9%;
  • углерод — до 0,12%;
  • никель — до 0,5%;
  • медь — до 0,6%.

ГОСТ

Химический состав стали определён в ГОСТ 19281 — 89. Отечественные производители металлургической продукции производят следующие виды продукции:

  • прокат разного класса и типоразмера: ГОСТ 19282-73, ГОСТ 2590-2006;
  • листы ГОСТ 19282 -73, ГОСТ 5521-93;
  • полоса ГОСТ 19281-89 , ГОСТ 82-70, ГОСТ 103-2006;
  • поковки и кованые изделия ГОСТ 1133-71;
  • трубы ОСТ 14-21-77.

На всю наносимую продукцию должна быть нанесена маркировка с указанием предприятия — производителя, датой выпуска, номер плавки и пр.

Элементы входящие в состав стали марки 10ХСНД позволяют ее использовать для производства металлических конструкций, предназначенных для работы в условиях с агрессивными средами и широком диапазоне температур от -70 до +450 градусов Цельсия.

Аналоги

Среди отечественных сталей, способных заменить 10ХСНД можно назвать 16Г2АФ. Среди импортных аналогов можно назвать следующие марки:

Болгария — 10ChSND;

Технологические особенности применения стали

Как уже отмечалось сталь 10ХСНД — низколегированная. Это означает только одно — она сваривается без ограничений. Но, наличие легированных элементов, может вызвать появление закалённых структур в сварочной зоне. В результате это может привести к снижению стойкости к образованию трещин.

Кроме этого легирующие элементы могут спровоцировать усиление склонности к хрупкому разрушению. Если сталь этого типа прошла термическую обработку, в частности, улучшение, которые могут терять прочность на разных участках нагрева и охлаждения.

Этот класс сталей требует от сварщика определенных знаний и навыков работы.

Технолог, выбирая способ электросварки и последующей термообработки, должен учитывать условия, в которых конструкция будет эксплуатироваться. Кстати, некоторые сложности, возникающие при выполнении сварочных работ по этой стали, требуют от производителя уделять особое внимание качеству выполняемых работ.

При обработке на токарно — фрезерном оборудовании нет необходимости подбирать какой-либо специальный инструмент или специальные режимы резания.

Термическая обработка сварных деталей

задача, которую решает термическая обработка — это снятие остаточных напряжений, которые возникают во время сварочных работ. Вследствие этой обработки должно произойти улучшение структуры металла и свойства сварного шва.

Эту обработку выполняют сразу по окончании сварочных работ. При этом очень важно не допускать переохлаждения сваренных заготовок. Минимально допустимая температура не должна опускаться ниже температуры подогрева. В том случае, если нет технической возможности выполнить термообработку, то имеет смысл выполнить термический отдых.

Для выполнения операций по термической обработке необходимо провести определенную подготовку. В частности, детали, предназначенные для обработки необходимо уложить на специальный поддон в соответствии с требованиями технологической карты. После укладки, поддон помещают в печь.

На момент загрузки печь должна быть или холодной или разогретой до температуры 300 ºC. Детали должны находится в печи порядка 1 — 2 часов. По истечении этого времени печь можно нагревать далее. Предельная температура должна быть не выше 590 ºC, а скорость нагрева должна составлять 70 ºC в час. Детали должны пролежать при температуре 590 ºC не менее трех часов. Охлаждение, должно быть, совершено со скоростью 50 ºC в час до 250 ºC.

На серьёзных предприятиях работает система контроля качества. То есть весь процесс термической обработки фиксируется в специальных журналах и постоянно фиксируются параметры печи. Замеры проводят с применением пирометра. Такой подход позволяет получать продукцию высокого качества.

Применение стали

10ХСНД, произведенная в соответствии с ГОСТ 6713-91, применяется для производства различного рода металлических конструкций, например, мостовых, предназначенных для эксплуатации как в нормальных условиях, так и в экстремальных.

Нижний предел температуры составляет -70 ºC. Верхний достигает +700 ºC.

Марка 10ХСНД обладает пределом прочности до 685 МПА именно это позволяет применять ее в оборудовании и конструкциях, которые должны обладать солидным запасом прочности, устойчивостью к воздействию коррозии и ограниченным весом.

Лист толщиной в несколько миллиметров применяют в судостроении для изготовления судовых корпусов.

Широкое применение нашла арматура, выполненная из этой стали. Для этого применяют заготовки прошедшие через закалку и отпуск.

Листы из стали применяют в качестве базового при получении двухслойных листов, которые отличаются высокой стойкостью к коррозии.

Источник: https://prompriem.ru/stati/stal-10hsnd.html

Сталь 10ХСНД конструкционная хромокремниеникелевая низколегированная

Сталь 10ХСНД  является конструкционной хромокремниеникелевой низколегированной сталью. Расшифровка стали говорит о следующих характеристиках.

Первое двузначное число указывает на примерное содержание углерода, буквы указывают на наличие химических элементов, как указывает государственный стандарт, Х – наличие хрома, С – кремния, Н – никеля и Д — меди.

Выпускается подобный сплав в форме листового проката, уголка, швеллера, полосы, брусков и труб различных диаметров.

Сталь 10ХСНД

Химический состав

Эта марка стали относится к категории низкоуглеродистых сталей. Государственный стандарт определяет следующий химический состав сплава. Она состоит из 96% железа, 0,12% углерода, около 1% хрома, на такие элементы как медь, кремний, марганец и никель приходится по 0,8%. Такой состав стали 10ХСНД  соответствует ГОСТ.

Химический состав марки 10ХСНД

Физические свойства

Основные физические свойства соответствуют установленным гостам и имеют следующие значения:

  • коэффициент линейного расширения составляет 40 Вт/(м×град);
  • модуль упругости от 1,97 МПа при температуре 100 °С, понижается до коэффициента 1,25 МПа при температуре 900 °С и более;
  • плотность сплава около 7800 кг/м3;
  • удельная теплоёмкость около 500 Дж/(кг×град);
  • удельное электрическое сопротивление R×109 Ом.

Технологические свойства стали 10ХСНД

Механические свойства

Механические свойства стали 10ХСНД  определяется входящими в состав сплава химическими элементами. Основные механические свойства при температуре в 20 °С находятся в пределах следующих значений:

  • ударная вязкость KCU равна 290 кДж/м2;
  • предел кратковременной прочности находится в интервале от 510 до 685 МПа;
  • предел текучести равен 390 МПа;
  • относительное удлинение достигает 19%.

Механические свойства марки 10ХСНД

Все приведенные характеристики удовлетворяют требованиям, установленным ГОСТ для всего сортамента стали 10ХСНД .

Скачать ГОСТ 19281-2014

К достоинствам стали 10ХСНД  можно отнести:

  • устойчивость к длительному воздействию высоких и низких температур;
  • хорошие показатели прочности;
  • высокая износоустойчивость;
  • отличная свариваемость.
Читайте также  Соединение оптики без сварки

Способы обработки и существующие аналоги

Этот сплав достаточно легко подвергается основным способам обработки:

  • резанию;
  • сварке;
  • ковке;
  • инструментальной обработке.

Для резания, выпускаемого проката, не требуется специального прочного инструмента. Это видно из физических и механических свойств. Свариваемость такого сплава не имеет ограничений и производится всеми известными способами.

Его можно подвергать ковке в интервале температур, от верхнего предела в 1200 °С до нижнего в 850 °С.

Произведенные испытания после такой обработки показали, что этот металл не флокеночувствителен и не имеет склонности к отпускной хрупкости.

Сравнение стали 10ХСНД с аналогами

Однако наличие в сплаве легирующих добавок приводит к появлению специфических закалочных структур. Их образование во время сварки может привести к снижению стойкости от образования так называемых холодных и горячих трещин.

Наибольшие трудности возникают при необходимости получения хорошей ударной вязкости металла в районе шва. При перегреве может снижаться стойкость к хрупкому разрушению.

Это вызвано возможностью появления увеличенного аустенитного зерна.

Вместе с тем, наличие легирующих добавок, оказывает положительное влияние на стойкость к перегреву во время сварки. Особенно это характерно при таких видах сварки, как электрошлаковая. В этом случае повышается ударная вязкость непосредственно у границ образованного шва и повышает надёжность сплавления.

После проведения сварочных работ выполняют термическую обработку. При проведении такой обработки удаётся снять остаточные напряжения, которые всегда возникают при проведении сварочных операций. Кроме этого происходит улучшение структуры самого металла и образованного шва.

Область применения 10ХСНД

Свойства этого металла позволяют применять его для сборки металлоконструкций, которые планируется использовать как при низких, так и при высоких температурах. Изделия из него могут эксплуатироваться в широком диапазоне температур, от -70 °С до +700 °С.

Лист стальной из марки 10ХСНДКовш, изготовленный из стали 10ХСНДШвеллер из стали 10ХСНД

В последнее время область применения этого металла достаточно расширилась. Её применяют в следующих областях:

  • строительная отрасль;
  • производство дорожной и строительной техники;
  • изготовление горнодобывающей техники;
  • лесозаготовительные и сельскохозяйственные машины;
  • механизмы для переработки строительных и металлических отходов.

В строительной сфере эта марка применяется для изготовления различных конструкций, в том числе и крупногабаритных (арок и пролётов мостов, несущих элементов зданий).

Для дорожной и горнодобывающей техники из неё изготавливают ковши и отдельные детали ковшей экскаваторов, бульдозеров.

Широко применяется подобный металл при изготовлении различных рыхлителей, мощных гидравлических ножниц.

В сельскохозяйственном машиностроении из этой стали производят лемеха плугов, элементы отжимных прессов. Для лесозаготовителей производят захваты лесопогрузчиков, отвалы бульдозеров. В переработке строительных материалов и отходов металла изготавливают специальные ножи для шредера, гидравлических ножниц, футеровки.

Отечественными аналогами 10ХСНД  являются стали, имеющие следующие обозначения — 10ХСНД А, 16Г2АФ, С390. Из зарубежных аналогов очень близка по свойствам сталь, произведенная в Болгарии, с маркировкой 10ChSND.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: http://StankiExpert.ru/spravochnik/materialovedenie/stal-10khsnd.html

Характеристика стали 10хснд и особенности проведения сварочных работ

Сплав, сочетающий в себе углерод и другие легирующие элементы, на основе железа называется сталью. Он хорошо деформируется при определенных температурах. Максимальное содержание углерода в углеродистых и низколегированных сталях около 2%, высоколегированные имеют до 2,5%. Делят низколегированные и легированные стали по 5% отметке металлических легирующих элементов.

  • 2 Характеристики стали 10хснд

Фазы

Итак, все стали — это сплав железа с углеродом, однако, даже стали общего назначения имеют некоторые количества марганца и кремния, а также фосфора и серы. Углерод в таких сталях присутствует на уровне от 0,05 до 1,0%.

Железо легируют углеродом по особому сценарию, механизм данной системы сплавов является двухступенчатым. Первый этап характеризуется соединением железа с 6,67% углерода, при этом образуется карбид железа, чаще называемый цементитом.

Поэтому обычная сталь при комнатной температуре состоит из цементита и феррита. Это фазы. Если сталь нагреть до 725 градусов, то произойдет растворение цементита в железе и образуется следующая фаза — аустенит. Любая сталь подвергается только трем изменениям, в то время как структур и их смесей может быть много.

Характеристики стали 10хснд

Сталь относится к классу конструкционных и низколегированных, применяется для:

  • сварки металлоконструкций.
  • изготовления различных деталей, которые должны обладать повышенной прочностью и стойкостью к коррозии с ограничением веса, способные выдерживать температуру от -70 до 450 градусов.

Сталь 10хснд состоит из следующих химических элементов: кремния, меди, мышьяка, марганца, никеля, фосфора, хрома, азота, серы.

Особенности сварки

Так как сталь низколегированная, то это значит, что она хорошо сваривается. Но легирующие элементы обуславливают возможность возникновения закалочных структур в зоне термической обработки.

Если к этому прибавятся неблагоприятные факторы, то это может привести к уменьшению ее стойкости против холодных трещин. Также легирующие элементы способны снизить сопротивляемость швов горячим трещинам.

Они могут усугубить либо уменьшить последствия перегрева и склонность к хрупкому разрушению стали в зоне температурного влияния и шве.

Особо трудными для сварки являются термически улучшенные стали, разупрочняющиеся в разных участках температурного влияния.

Данный класс стали требует определенных навыков сварки, так как наибольшие трудности возникают в связи с приобретением требуемой ударной вязкости металла шва и участка температурной обработки около границы сплавления. Низколегированные стали с низкой стойкостью против хрупкого разрушения, подвергшиеся перегреву при электрошлаковой сварке, появляются тогда, когда:

  • значительно укрупняется аустенитное зерно и внутризерновая структура,
  • образуется видманштеттовая структура и ферритные оторочки по границам зерен,
  • повышена хрупкость ферритной основы металла,
  • развивается высокотемпературная химическая неоднородность,
  • перераспределяются и выделяются по границам зерна карбидов или легкоплавкие сульфидные включения в виде плен и строчек.

Снижение стойкости перед хрупким разрушением металла шва также вызывают вышеперечисленные причины.

Сам металл под влиянием сварочного нагрева подвергается а-у-а превращению, в то время как в металле шва возникает только у-а превращение.

Данный факт плюс крупнозернистость строения металла шва приводят к заметной химической неоднородности, это касается, главным образом, наиболее ликвирующих примесей стали — углероду, фосфору и сере.

Если применяется электрошлаковый способ сварки, то он оказывает рафинирующее действие. Типичным для всех методов дуговой сварки является шов по оксидным включениям, он исключительно чист. Сульфиды и фосфиды представлены немногочисленно.

При электрошлаковой сварке на свойства шва оказывает основное влияние выделение сульфидов, которые имеют вид пленок по границам зерен, локализующиеся, главным образом, в области оси шва, а также внутрикристаллическая ликвация фосфора, который обогащает участки феррита — они совпадают с границами первичных кристаллитов.

Неметаллические включения в шве распределяются посредством направленности роста кристаллитов, она зависит от режимов сварки. Количество сульфидов, которые оттесняются к оси шва растущими кристаллитами, увеличивается, ударная же вязкость шва понижается. Это происходит благодаря увеличению скорости сварки (быстроте подачи проволоки) и глубине металлической ванны.

Кислород и азот, которые находятся в твердом растворе, а также повышенная плотность дислокаций в шве, делают меньше сопротивляемость хрупким разрушениям.

Требованиям технических условий, как правило, удовлетворяет ударная вязкость шва и зоны температурного влияния около границы сплавления в местах перегрева и твердо-жидкого состояния при комнатной температуре после сварки или отпуска.

Если температурные условия более низки, то ударная вязкость данных участков обычно низкая.

Читайте также  Сварка проволоки встык

Поэтому выбор технологии электрошлаковой сварки и следующей за ней термообработки зависит от условий эксплуатации конструкции и стойкости низколегированной стали 10хснд и шва в соединении посредством сварочных работ против хрупкого разрушения.

Чтобы получить соединения с высокими свойствами существуют некоторые возможности. Для этого нужно предпринять некоторые шаги по выбору:

  • материалов с высокими показателями стойкости к перегреву при электрошлаковой сварке,
  • способа рациональной термообработки,
  • определенных режимов,
  • технологических подходов сварки.

В задачи технолога входит оценка сопротивляемости хрупкому разрушению шва и стали, сварка которой происходит в зоне термического влияния, а также определение относительно конкретных конструкций и условий их эксплуатации рациональных способов повышения свойств соединений.

Стойкость стали к перегреву при способе электрошлаковой сварки определяется легированием стали, которое оказывает решающее влияние на этот показатель. Если легирование происходит рационально, то он становится столь высоким, что ударная вязкость металла около границ сплавления соответствует требованиям уже после высокого отпуска, не прибегая к помощи, улучшающей качество, высокотемпературной обработки — нормализации.

Сталь по сравнению с другими металлами применяется широко. Это важный материал, он гибок в обработке и применении. Данное свойство образуется в результате различных вариантов ее структуры, для их достижения применяются способы термической обработки.

  • Николай Иванович Матвеев
  • Распечатать

Источник: https://stanok.guru/stal/fazy-stali-i-harakteristiki-marki-10hsnd.html

Лист 10ХСНД ГОСТ 6713-91

Поставляем со склада в городе Челябинск листовой металлопрокат марки стали 10ХСНД ГОСТ 6713-91 предназначенный для изготовления мостовых конструкций обычного и северного исполнения (3 категории при температуре -70 °С). 

Повышенная прочность и устойчивость к коррозии позволяет применять сталь 10ХСНД в деталях спецтехники и элементах сварных металлоконструкций.  

Листовой прокат марки стали 10ХСНД ГОСТ 6713-91 обладает пределом прочности σв 510-685 МПа.

Заказать сталь марки 10ХСНД, получить информацию по сортаменту, просчитать доставку можно обратившись по многоканальному телефону в Челябинске +7 351 223-14-76, либо отправив сообщение по электронной почте Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра..

Аналог (заменитель) марки стали 10ХСНД ГОСТ 6713-91:

марка стали 10ХСНДА, С390, 14Г2АФ, 15ХСНД, 15ХСНДА, С440, 16Г2АФ
 

Дополнительные условия к металлопрокату по требованию Покупателя в соответствии с ГОСТ, ТУ и др. НТД:
1. 100%-УЗК 0, 1, 2, 3 класса сплошности по ГОСТ 22727-88.
2. Обрезная кромка.
3.

 Плоскостность: высокая, особо высокая.
4. Термообработанный: контролируемая прокатка, нормализцаия, закалка с высоким отпуском, высокий отпуск.
5.

 Z-свойства по ГОСТ 28870-90, относительное сужение в направлении толщины проката, не менее 15%, 25%, 35%.

Товары группы:

НАИМЕНОВАНИЕ ЦЕНА
Лист г/к 10ХСНД 8х2200х11200 ГОСТ 6713-91 52 000,00
Лист г/к 10ХСНД 10х24500х12100 ГОСТ 6713-91 52 000,00
Лист г/к 10ХСНД 12х2540х12250 ГОСТ 6713-91 52 000,00
Лист г/к 10ХСНД 14х2480х12030 ГОСТ 6713-91 52 000,00
Лист г/к 10ХСНД 16х2560х12000 ГОСТ 6713-91 52 000,00
Лист г/к 10ХСНД 18х2300х11100 ГОСТ 6713-91 53 000,00
Лист г/к 10ХСНД 20х2540х12050 ГОСТ 6713-91 53 000,00
Лист г/к 10ХСНД 24х2600х12500 ГОСТ 6713-91 53 000,00
Лист г/к 10ХСНД 25х2550х12150 ГОСТ 6713-91 53 000,00
Лист г/к 10ХСНД 30х2560х12200 ГОСТ 6713-91 53 000,00
Лист г/к 10ХСНД 32х2100х11500 ГОСТ 6713-91 53 000,00
Лист г/к 10ХСНД 36х2000х8100 ГОСТ 6713-91 53 000,00
Лист г/к 10ХСНД 40х2500х9800 ГОСТ 6713-91 53 000,00
Лист г/к 10ХСНД 45х2490х10100 ГОСТ 6713-91 53 000,00
Лист г/к 10ХСНД 50х2150х6350 ГОСТ 6713-91 53 000,00

Наличие, размеры листа, цену уточняйте в отделе продаж.

В наличии листы: толщина 8мм-50мм ширина 1500-2500 мм

длина 2500-12500 мм

Характеристики стали 10ХСНД

Химический состав в % материала 10ХСНД ГОСТ 6713-91:

C Si Mn Ni S P Cr Cu
до 0.12 0.8 — 1.1 0.5 — 0.8 0.5 — 0.8 до 0.035 до 0.035 0.6 — 0.9 0.4 — 0.6

Механические свойства при Т=20oС материала 10ХСНД: 

Сортамент Размер Напр. sT d5 y KCU Термообр.
мм МПа МПа % % кДж / м2
Прокат, ГОСТ 6713-91 510-685 390 19 290    

Механические свойства:
 — Предел кратковременной прочности , [МПа]sT — Предел пропорциональности (предел текучести для остаточной деформации), [МПа]d5 — Относительное удлинение при разрыве , [ % ]y — Относительное сужение , [ % ]KCU — Ударная вязкость , [ кДж / м2]HB — Твердость по Бринеллю , [МПа]

Физические свойства:
T
— Температура, при которой получены данные свойства , [Град]E — Модуль упругости первого рода , [МПа]a — Коэффициент температурного (линейного) расширения (диапазон 20o — T ) , [1/Град]l — Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)]r — Плотность материала , [кг/м3]C — Удельная теплоемкость материала (диапазон 20o — T ), [Дж/(кг·град)]R — Удельное электросопротивление, [Ом·м]

Свариваемость: без ограничений — сварка производится без подогрева и без последующей термообработки ограниченно свариваемая — сварка возможна при подогреве до 100-120 град. и последующей термообработке

трудносвариваемая — для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки — отжиг.

 

Сталь марки 10ХСНД расшифровка:

10 указывает на среднее содержание углерода в стали 0,10%
Х — хром
С — кремний
Н — никель
Д — медь

Доставка спецтранспортом листа 10ХСНД, 15ХСНД ГОСТ 6713-91 шириной 2,5 метра:

Лист 10ХСНД-12 ГОСТ 19281-14 4мм, 5мм, 6мм:

Лист 10ХСНД ГОСТ 17066-94 2мм, 3мм, 4мм:

Лист 10ХСНД-3 хладостойкий ГОСТ 6713-91 8мм-50мм:

Лист 10ХСНД-3 ГОСТ 6713-91 доставка до г. Сочи 8мм, 16мм, 20мм:

Источник: http://bmkstal.ru/produkciya/mostovaya-stal/list-10hsnd

Pereosnastka.ru

Сварка низколегированных сталей

Категория:

Сварка различных металлов

Сварка низколегированных сталей

Легированные стали подразделяются на низколегированные (легирующих элементов в сумме менее 2,5%), среднелегированные (от 2,5 до 10%) и высоколегированные (более 10%). Низколегированные стали делят на низколегированные низкоуглеродистые, низколегированные теплоустойчивые и низколегированные среднеугле-родистые.

углерода в низколегированных низкоуглеродистых конструкционных сталях не превышает 0,22%- В зависимости от легирования стали подразделяют на марганцовистые (14Г, 14Г2), кремнемарганцовистые (09Г2С, 10Г2С1, 14ГС, 17ГС и др.), хромо-кремнемарганцовистые (14ХГС и др.), марганцовоазотнованадие-вые (14Г2АФ, 18Г2АФ, 18Г2АФпс и др.), марганцовониобиевая (10Г2Б), хромокремненикельмедистые (ЮХСНД, 15ХСНД) и т. д.

Низколегированные низкоуглеродистые стали применяют в транспортном машиностроении, судостроении, гидротехническом строительстве, в производстве труб и др. Низколегированные стали поставляют по ГОСТ 19281—73 и 19282—73 и специальным техническим условиям.

Низколегированные теплоустойчивые стали должны обладать повышенной прочностью при высоких температурах эксплуатации Наиболее широко теплоустойчивые стали применяют при изготовлении паровых энергетических установок. Для повышения жаропрочности в их состав вводят молибден (М), вольфрам (В) и ванадий (Ф), а для обеспечения жаростойкости — хром (X), образующий плотную защитную пленку на поверхности металла.

Низколегированные сред-неуглеродистые (более 0,22% углерода) конструкционные стали применяют в машиностроении обычно в термо-обработанном состоянии. Технология сварки низколегированных среднеуглероди-стых сталей подобна технологии сварки среднелегиро-ванных сталей.

Особенности сварки низ= колегированных сталей. Низколегированные стали сваривать труднее, чем низкоуглеродистые конструкционные. Низколегированная сталь более чувствительна к тепловым воздействиям при сварке. В зависимости от марки низколегированной стали при сварке могут образоваться закалочные структуры или перегрев в зоне термического влияния сварного соединения.

Читайте также  Тележка для сварочного полуавтомата

Структура околошовного металла зависит от его химического состава, скорости охлаждения и длительности пребывания металла при соответствующих температурах, при которых происходит изменение микроструктуры и размера зерен. Если в доэвтектоид-ной стали получить нагревом аустенит (рис. 1), а затем сталь охлаждать с различной скоростью, то критические точки стали снижаются.

При малой скорости охлаждения получают структуру перлит (механическая смесь феррита и цементита).

При большой скорости охлаждения аустенит распадается на составляющие структуры при относительно низких температурах и образуются структуры — сорбит, троостит, бейнит и при очень высокой скорости охлаждения — мартенсит.

Наиболее хрупкой структурой является мартенситная, поэтому не следует при охлаждении допускать превращения аустенита в мартенсит при сварке низколегированных сталей.

Рис. 1. Диаграмма изотермического (при постоянной температуре) распада аустенита низкоуглеродистой стали: А — начало распада, Б — конец распада, Ai — критическая точка стали, Мн и Мк — начало и конец превращения аустенита в мартенсит; v2, v3 и vt — скорости охлаждения с образованием различных структур

Скорость охлаждения стали, особенно большой толщины, при сварке всегда значительно превышает обычную скорость охлаждения металла на воздухе, вследствие чего при сварке легированных сталей возможно образование мартенсита.

Для предупреждения образования при сварке закалочной мар-тенситной структуры необходимо применять меры, замедляющие охлаждение зоны термического влияния, — подогрев изделия и применение многослойной сварки.

В некоторых случаях в зависимости от условий эксплуатации изделий допускают перегрев, т. е. укрупнение зерен в металле зоны термического влияния сварных соединений, выполненных из низколегированных сталей.

При высоких температурах эксплуатации изделий для повышения сопротивления ползучести (деформирование изделия яри высоких температурах с течением времени) необходимо иметь крупнозернистую структуру и в сварном соединении. Но металл с очень крупным зерном обладает пониженной пластичностью и поэтому размер зерен допускается до известного предела.

При эксплуатации изделий в условиях низких температур ползучесть исключается и необходима мелкозернистая структура металла, обеспечивающая увеличенную прочность и пластичность.

Покрытые электроды и другие сварочные материалы при сварке низколегированных сталей подбираются такими, чтобы содержание углерода, серы, фосфора и других вредных элементов в них было ниже по сравнению с материалами для сварки низкоуглеродистых конструкционных сталей. Этим удается увеличить стойкость металла шва против кристаллизационных трещин, так как низколегированные стали в значительной степени склонны к их образованию.

Технология сварки низколегированной стали. Низколегированные низкоуглеродистые стали 09Г2, 09Г2С, 10ХСНД, 10Г2С1 и 10Г2Б при сварке не закаливаются и не склонны к перегреву. Сварку этих сталей производят при любом тепловом режиме, аналогично режиму сварки низкоуглеродистой стали.

Для обеспечения равнопрочности соединения ручную сварку выполняют электродами типа Э50А. Твердость и прочность околошовной зоны практически не отличаются от основного металла.

Сварочные материалы при сварке порошковой проволокой и в защитном газе подбирают такими, чтобы обеспечить прочностные свойства металлу шва на уровне прочности, достигаемой электродами типа Э50А.

Низколегированные низкоуглеродистые стали 12ГС, 14Г, 14Г2 14ХГС, 15ХСНД, 15Г2Ф, 15Г2СФ, 15Г2АФ при сварке могут образовывать закалочные микроструктуры и перегрев металла шва и зоны термического влияния. Количество закаливающихся структур резко уменьшается, если сварка выполняется с относительно большой погонной энергией, необходимой для уменьшения скорости охлаждения сварного соединения.

Однако снижение скорости охлаждения металла при сварке приводит к укрупнению зерен (перегреву) металла шва и околошовного металла вследствие повышенного содержания углерода в этих сталях. Это особенно касается сталей 15ХСНД, 14ХГС. Стали 15Г2Ф, 15Г2СФ и 15Г2АФ менее склонны к перегреву в околошовной зоне, так как они легированы ванадием и азотом.

Поэтому сварка большинства указанных сталей ограничивается более узкими пределами тепловых режимов, чем сварка низкоуглеродистой стали.

Режим сварки необходимо подбирать так, чтобы не было большого количества закалочных микроструктур и сильного перегрева металла. Тогда можно производить сварку стали любой толщины без ограничений при окружающей температуре не ниже —10 °С. При более низкой температуре необходим предварительный подогрев до 120—150 °С.

При температуре ниже —25 °С сварка изделий из закаливающихся сталей запрещается. Для предупреждения большого перегрева сварку сталей 15ХСНД и 14ХГС следует проводить на пониженной погонной тепловой энергии (при пониженных значениях тока электродами меньшего диаметра) по сравнению со сваркой низкоуглеродистой стали.

Для обеспечения равнопрочности основного металла и сварного соединения при сварке этих сталей надо применять электроды типа Э50А или Э55.

Технология сварки низколегированных среднеуглеродистых сталей 17ГС, 18Г2АФ, 35ХМ и других подобна технологии сварки среднелегированных сталей.

Технология сварки покрытыми электродами. Технология сварки низколегированных низкоуглеродистых сталей покрытыми электродами мало отличается от технологии сварки низкоуглеродистых сталей.

Низколегированные стали сваривают в основном электродами с фтористокальциевым покрытием типа Э42А и Э50А. Для сварки сталей с пониженным содержанием углерода (например 09Г2) в ряде случаев используют электроды с рутиловым покрытием, например АНО-1 (тип

Э42Т). Наиболее широко применяют электроды УОНИ—13/45, СМ-11, АНО-8 (Тип Э42А) и УОНИ-13/55, ДСК-50, АНО-7 (тип Э50А), обеспечивающие прочность и пластичность металла шва на уровне свойств основнэго металла.

Высокая прочность металла шва при сварке электродами типа Э42А достигается за счет перехода легирующих элементов в шов из основного металла и повышенной скорости охлаждения шва. Для сварки кольцевых швов трубопроводов, работающих при температурах до —70°С, например из стали 10Г2, находят применение электроды ВСН-3 (тип ЭбОАФ) с фтористокальциевым покрытием.

Технология сварки под флюсом. В большинстве случаев применяют те же сварочные материалы, что и при сварке низкоуглеродистых сталей: плавленые флюсы АН-348-А, ОСЦ-45 (однодуговая сварка), АН-60 (много-дуговая сварка с повышенной скоростью), а также сварочные проволоки Св-08ГА и Св-10Г2.

Для сварки микролегированных сталей, например 15Г2АФ, в ряде случаев применяют низкокремнистый флюс АН-22 в сочетании с проволоками Св-08ХМ и Св-10НМА. Однако при этом швы менее стойки против кристаллизационных трещин, поэтому сварку рекомендуется выполнять с предварительным подогревом.

Технология сварки в защитных газах. Это в основном полуавтоматическая сварка в углекислом газе. Технология сварки низколегированных сталей в углекислом газе практически ничем не отличается от технологии сварки низкоуглеродистой стали.

На практике применяют те же сварочные материалы, что и для сварки низкоуглеродистой стали. Так, стали 15ХСНД, 14ХГС и 10ХСНД сваривают сварочной проволокой Св-08Г2С.

При однослойной сварке и сварке не более чем в два-три слоя можно применять проволоку Св-12ГС.

Полуавтоматическую сварку в углекислом газе выполняют также порошковыми проволоками ПП-АН4 и ПП-АН8. Проволоку ПП-АН8 можно использовать и при автоматической сварке. Швы, сваренные проволокой ПП-АН8, например на стали 09Г2, равнопрочны основному металлу и имеют повышенные пластические характеристики.

https://www.youtube.com/watch?v=UmhgQOs4A4Q

Для повышения коррозионной стойкости сварных соединений в морской воде применяют сварочную проволоку Св-08ХГ2С, обеспечивающую дополнительное легирование металла шва хромом.

Реклама:

Сварка среднелегированных сталей

Источник: http://pereosnastka.ru/articles/svarka-nizkolegirovannykh-stalei