Ротор дарье конструкция принцип работы

Содержание

Создаем ветрогенератор Савониуса своими руками

Ротор дарье конструкция принцип работы

Применение ветрогенераторов становится все более распространенным способом производства электроэнергии. Они довольно просты, не требуют слишком значительного ухода и частых ремонтов, позволяют обеспечить электроэнергией частный дом или служат источником дополнительного питания для освещения и т.д. Стоимость готового комплекта слишком высока, что служит поводом проявить свои конструкторские способности и заняться изготовлением ветряка своими руками. Рассмотрим одну из наиболее известных и распространенных конструкций ветрогенераторов.

Что представляет собой ротор Савониуса

Ветрогенератор или, точнее, ротор Савониуса — это конструкция с вертикальной осью вращения. Лопасти такого ротора представляют собой изогнутые плоскости, объединенные обычно по 2 шт. Это вызвано тем, что большая площадь лопастей вызывает сильные противодействующие нагрузки, когда потоком ветра создается давление на тыльные стороны. Создается компенсирующее давление, уравновешивающее воздействие на обе стороны лопаток, что создает трудности при запуске.

Существуют и конструкции с большим количеством лопастей, но они немного изменены — разнесены в стороны и имеют относительно небольшую площадь. Такой вариант применяется при использовании тяжелых роторов, нуждающихся в сильном крутящем моменте для работы, и разнос лопастей относительно оси создает рычаг, увеличивающий усилие вращения.

[su_box style="default" title="" box_color="#F27405" radius="0"]

На первый взгляд, ротор Савониуса неработоспособен, поскольку задняя сторона лопастей создает сильное сопротивление вращению оси. Но это не так. Потоки ветра, попадающие на заднюю часть лопатки, благодаря ее закругленной форме мягко омывают ее и делятся на две части. Одна уходит в сторону, а другая соскальзывает на рабочую сторону второй лопасти и способствует усилению ее вращения.

[/su_box]

Этот эффект хорошо проявляется только при 2 лопастях, расположенных диаметрально, поэтому для увеличения крутящего момента используют пары лопастей, установленных друг под другом с поворотом относительно вертикальной оси на 90°.

Особенности вертикально-осевых роторов

Вертикальные конструкции имеют меньшую эффективность по сравнению с горизонтальными. Это их основной и общепризнанный недостаток. При этом, вертикальные конструкции намного удобнее в самостоятельном изготовлении. Они не нуждаются в системе наведения на ветер, что является обязательным для горизонтальных роторов. Кроме того, независимость от угла атаки ветра позволяет существенно снизить вес вращающейся части, что облегчает запуск при относительно слабых ветрах.

Помимо уже известного нам ротора Савониуса распространены другие типы вертикально-осевых конструкций:

  • ротор Дарье
  • ротор Ленца ортогональный
  • геликоидный

Обилие конструкций позволяет выбрать наиболее доступную для самостоятельного изготовления. Основная задача мастера — понять специфику избранной для повторения системы, усвоить принцип ее действия. Все допущенные ошибки обычно выражаются трудностями при запуске вращения и большим весом ротора, который создает чрезмерную нагрузку на опорные конструкции и обладает большой инерцией покоя. В сети имеется множество роликов с описаниями самодельных ветрогенераторов. Вот, например, репортаж о создании ротора Ленца:

Особенностью конструкции является сочетание подъемной силы лопастей, имеющих в сечении форму крыла самолета, с дополнительными уступами на внешней части лопастей, увеличивающими ветровое давление на них и усиливающими крутящий момент.

Подобных конструкций имеется немало, что подтверждает возможность создания своими руками ветрогенератора без крупных денежных вложений.

Использование автомобильного генератора

Одним из необходимых элементов ветрогенератора является собственно генератор, устройство, преобразующее энергию вращения в электрический ток.

https://www.youtube.com/watch?v=LZhbirSE8o8

Существуют разные пути решения вопроса, от самодельных конструкций, до использования мотор-колеса или иных готовых устройств. Одним из эффективных вариантов является автомобильный генератор. Это готовая конструкция, не нуждающаяся в каких-либо существенных изменениях или переделках.

Применение автомобильных генераторов сокращает время изготовления ветрогенератора, снимает заботу о создании генератора своими руками (часто с неясным результатом).

Приведенный видеоролик достаточно подробно и наглядно демонстрирует процесс доработки, установки и прочих действий с автомобильным генератором при создании ветряка.

Изготовление ротора Савониуса

Конструкция Савониуса, при всех своих недостатках, наиболее удобна для создания своими руками. Она не требует создания лопастей со сложными криволинейными поверхностями или сечением, способствующим созданию подъемной силы. Для изготовления лопастей Савониуса подойдут любые криволинейные элементы из продольно разрезанных пластиковых труб, металлических бочек, загнутых самостоятельно металлических листов.

Для изготовления ротора достаточной величины прежде всего потребуется ось вращения, установленная на подшипники. Наиболее распространена конструкция, когда часть вала, на которой будут закреплены лопасти, выходит из проходной ступицы с подшипником и остается свободной, чтобы не создавать препятствий для движения лопаток. Нижняя часть вала проходит через второй подшипник и оснащается шкивом для передачи вращения на мультипликатор (устройство, увеличивающее скорость вращения) или непосредственно на генератор.

Изготовление лопаток требует наличия материала. Как уже говорилось, используются изначально загнутые элементы, или применяются стальные листы (например, из оцинкованной стали), профиль которым придается самостоятельно. Выбор того или иного варианта — вопрос доступности или возможностей мастера, но если лопатки делаются полностью самостоятельно, то не возникает зависимости от размеров труб, бочек или иных цилиндров.

Установка лопаток производится на прямой линии, проходящей через ось вращения. При монтаже большого количества лопаток может получиться ситуация, когда ротор находит устойчивое положение и не запускается даже при относительно большой скорости ветра, что требует приложения к нему стартового импульса. Необходимо также следить за весом конструкции и стремиться всячески снизить его, но не в ущерб прочности. Легкая вращающаяся часть начинает движение при меньших скоростях ветра, поэтому чрезмерно увеличивать массу ротора нецелесообразно.

Рекомендуемые товары

Источник: https://energo.house/veter/vetrogenerator-savoniusa.html

Ротор дарье конструкция принцип работы — Все об электричестве

Ротор дарье конструкция принцип работы

В этой статье рассмотрим основные типы гидрогенераторов и их особенности:

  • Водяное колесо;
  • Пропеллер;
  • Гирляндная гидроэлектростанция;
  • Ротор Дарье.
    • Простейшие в эксплуатации и самые надежные мини-ГЭС — это водяное колесо и пропеллер. Их несложно построить собственными руками, и они не требуют точных расчетов. Водяное колесо, снабженное лопастями, устанавливается перпендикулярно водной поверхности таким образом, чтобы оно было погружено в воду примерно на треть — по принципу старинных водяных мельниц.

      Установка водяного колеса

      Существуют различные варианты установки водяного колеса. При этом перепад высот водного потока может быть организован искусственно — чтобы повысить производительность мини-ГЭС.Варианты установки водяного колеса:
      • Нижнебойное водяное колесо (устанавливается непосредственно в водный поток);
      • Среднебойное водяное колесо (устанавливается в месте перепада высот водного потока таким образом, что падающий поток воды попадает примерно на середину колеса);
      • Верхнебойное водяное колесо (устанавливается в месте перепада высот водного потока таким образом, что падающий поток воды попадает сверху колеса)

      Производители оборудования для мини-ГЭС предлагают специальные колеса-турбины, оснащенные лопатками, оптимизированными под ту или иную скорость водного потока. Народные умельцы изготавливают водяные колеса таким же образом, как и предки, ставившие водяные мельницы, то есть без всякой оптимизации. С одной стороны, это снижает КПД установки, с другой — обходится гораздо дешевле, чем приобретение «магазинного» оборудования.

      Использование пропеллера

      Пропеллером называют колесо, аналогичное колесу ветряных мельниц, но располагающееся под водой. Он полностью погружен в воду (в отличие от водяного колеса), а ширина его лопастей минимальна (в отличие от воздушного колеса).

      Для разных скоростей водного потока выбираются лопасти разной ширины. Так, при скорости 0,8-2 м/с оптимальная ширина — 2 см. Производители оборудования для мини-ГЭС предлагают модели пропеллеров, подходящие для той или иной скорости водного потока. Но соответствующий пропеллер можно сделать и самостоятельно.

      Бесплотинные гидрогенераторы: гирляндная ГЭС и ротор Дарье

      Существует еще два вида бесплотинных мини-ГЭС: гирляндная ГЭС и ротор Дарье. Их устройство сложнее, а потому такие гидрогенераторы применяются реже.

      https://www.youtube.com/watch?v=IKwY693hxjo

      Гирляндная ГЭС получила название от внешнего вида: стальной трос диаметром 10-15 мм, на котором, как бусины, нанизаны роторы. Трос в данном случае выполняет функцию гибкого вала. Им перегораживают русло реки, при этом роторы полностью погружаются в воду. Один конец троса соединяется с подшипником, а второй — с валом генератора. Водный поток вращает роторы, а они, в свою очередь, вращают трос.

      Уже в 50-е годы ХХ столетия народные умельцы сооружали гирляндные мини-ГЭС, используя генератор от автомобиля, а в качестве роторов — консервные банки.

      Сегодня технологии двинулись вперед, и промышленность предлагает роторы различных видов, повышающие КПД генератора.

      [su_box style="default" title="" box_color="#BF0404" radius="0"]

      В качестве гидроколес эффективнее использовать не консервные банки, а пропеллеры (аналоги детских вертушек), изготовленные из тонких металлических листов. Одно такое гидроколесо дает до 2 кВт энергии при скорости водного потока 2,5 м/с.

      [/su_box]

      Глубина погружения роторов зависит от времени года: летом их опускают на о,2 глубины от поверхности воды, а зимой — на о,5 глубины от поверхности льда (если водный поток замерзает). При этом глубина водного потока не должна превышать 1,5 м.

      То есть подобные мини-ГЭС устанавливаются на небольших речках и ручьях.

      Конструкция гирляндной ГЭС с турбинно-тросовым приводом:

  1. подшипник;
  2. опора;
  3. металлический трос;
  4. электрогенератор;
  5. уровень воды в реке;
  6. речное русло.
Читайте также  Вентильные двигатели принцип работы

Недостатки гирляндных ГЭС очевидны:

  • высокая материалоёмкость, что приводит к довольно значительным первоначальным расходам;
  • сложность конструкции, что снижает надежность оборудования;
  • необходимость перегораживать речное русло, что может представлять опасность для окружающих.

Самый существенный минус — перегораживание русла. Подобное практически невозможно сделать в более или менее оживленном месте: дети, рыбаки, лодки — все это мешает нормальной работе гидрогенератора, причем даже установка предупреждающих знаков мало помогает.

Остается только огораживать участок реки таким образом, чтобы воспрепятствовать доступу нежелательных визитеров к оборудованию, но это не всегда удается осуществить.

Поэтому гирляндные мини-ГЭС используются в основном в относительно безлюдных местах (например, на летних пастбищах).

[su_quote]

Более безопасным для окружающих вариантом гирляндной мини-ГЭС является погружная установка, заключенная в раму. В этом случае нет необходимости перегораживать все речное русло. Кроме того, оборудование можно устанавливать практически при любой глубине и ширине реки (если глубина слишком велика, то рама снабжается поплавками).

[/su_quote]

Погружная мини-ГЭС с горизонтально расположенными роторами поперечного типа.

Принцип работы ротора Дарье

Ротор Дарье — четвертый вариант мини-ГЭС. Это вертикальный ротор с лопастями специальной конструкции: поток воды оказывает на них различное давление, и за счет этого осуществляется вращение. Эффект напоминает подъемную силу, действующую на самолетное крыло, которая возникает из-за разницы между давлением воздуха над крылом и под ним.

В конструкции гидрогенератора ротор Дарье используется реже всего, потому что перед началом эксплуатации его необходимо раскрутить. К плюсам такого оборудования относится то, что раскрученный ротор Дарье продолжает работать вне зависимости от сезонных изменений скорости водного потока и т. д. Остановить его может только полное промерзание воды. Но оборудование этого типа является дорогостоящим и сложным в эксплуатации.

Достоинства гидрогенераторов

Если вы собираетесь устанавливать гидрогенератор, имейте в виду, что многие небольшие водотоки в холодное время года замерзают. Кроме того, для них характерны изменения уровня, объема и скорости воды в зависимости от сезона. А некоторые водоемы просто пересыхают в летний период. Все эти факторы влияют на работоспособность и КПД гидрогенератора.

Более того, из-за них мини-ГЭС может оказаться лишь сезонным источником энергии. Например, если река или ручей пересыхает летом, гидрогенератор будет работать только в холодную пору года, а если замерзает на всю глубину зимой, то сможет обеспечивать ваше домовладение электричеством лишь при плюсовых температурах окружающей среды.

Периоды, когда гидрогенератор не эксплуатируется, используются для технического обслуживания. Из главной триады бестопливной энергетики — гидро-, ветро- и гелиоэнергетики — первая требует самых значительных первоначальны затрат, а оборудование наиболее сложно в эксплуатации и имеет самый малый ресурс службы (работа осуществляется в агрессивной среде).

Но при этом есть и очевидные плюсы: оборудование для мини-ГЭС выпускается давно, оно тщательно опробовано и надежно — известно, чего от него ожидать.

https://www.youtube.com/watch?v=0p3sBOI6VEs

Производят его многие компании, в том числе и отечественные, которые предлагают различные варианты комплектации, рассчитанные на все возможные разновидности водных потоков и условия эксплуатации.

В настоящее время изготавливаются мини-ГЭС, оснащенные устройствами автоматического регулирования. Это оборудование благополучно работает «само по себе», не требуя постоянного присутствия человека.

Источник: http://genport.ru/article/osnovnye-tipy-gidrogeneratorov

Чем лучше и чем хуже вертикальный ветрогенератор в плане эксплуатации

Использование энергии ветра для выработки электричества – одна из перспективных форм развития альтернативной энергетики. Вертикальный ветрогенератор является перспективным направлением развития отрасли, т.к. имеет ряд преимуществ по сравнению с горизонтальными аналогами.

Принцип работы

Вертикальный ветряк представляет собой цилиндр, устанавливаемый на основание. Благодаря своей форме, работает вне зависимости от направления ветра. Вне зависимости от вида вертикального ветрогенератора,  он устроен таким образом, чтобы давление потока воздуха на одну из его сторон было выше, чем на другую.

Благодаря такой разнице в давлении происходит вращение оси генератора и выработка электричества. Из-за того, что сила ветра направлена на обе стороны ветрогенератора, показатель стартовой скорости ветра немного больше, чем у горизонтальных ветряков, но при должном качестве деталей, существует самораскрутка – т.е. значительное увеличение оборотов генератора даже при небольшом (от 3,5 м/с) ветре.

Какая конструкция лучше

Существует несколько принципиально разных конструкций вертикальных ветрогенераторов, каждая из них обладает своими достоинствами и недостатками.

  1. Ветряк Савониуса — полукруглые лопасти

    Ротор Савониуса. Модель такого вертикального ветряка включает в себя две или более лопасти, выполненные в форме полукруга. При этом давление, оказываемое на «открытую» часть круга значительно превышает то, которое воздействует на противоположную сторону. Конструкция достаточно проста в изготовлении, поэтому пользуется наибольшей популярностью среди самодельных вертикальных ветрогенераторов. Недостатки:

    • Большая «парусность». Воздействие ветра кренит всю конструкцию, создавая напряжение в оси и выводя из строя подшипник, на котором вращается весь ротор.
    • Конструкция не способна начать вращаться самостоятельно при наличии двух или трех лопастей, поэтому два таких ротора необходимо закреплять на одной оси одну под другой под углом в 90°
  2. На ортогональный ротор устанавливают дополнительные статические экраны для увеличения производительности

    Ротор Дарье или ортогональный. Существует множество модификаций такого вертикального ветрогенератора, но принцип работы остается неизменным. Вращение происходит за счет крылообразной формы лопасти генератора. При воздействии потока воздуха создается подъемная сила, за счет которой и вращается ось. Недостатки:

    • Низкая, даже по меркам ветрогенераторов, эффективность.
    • Скорость ветра для полной раскрутки такого генератора должна быть не менее 4 м/с. При этом до набора полной скорости вращения такого ротора, нагрузку к ветряку подключать нельзя – остановится.
    • Шумность. Если в остальных моделях шум издают только подвижные части (подшипники), то вертикальный ветрогенератор такого типа шумит лопастями. Очень сильно.
    • Из-за вибрации быстро выводит из строя подшипники и все несущие элементы конструкции.
  3. Геликоидный ротор имеет сложную конструкцию

    Геликоидный ротор. Этот вертикальный ветрогенератор имеет замысловатую форму, но по — сути это ортогональный ветрогенератор с вертикальной осью, только лопасти у него закручены вдоль несущей оси, что значительно повышает срок службы всей конструкции, т.к. обеспечивает равномерную нагрузку на подшипник и мачту со всех сторон. Недостатки:

    • Сложность в изготовлении, отсюда высокая стоимость вертикального ветряка.
  4. Многолопастной ветряк

    https://www.youtube.com/watch?v=uXwamyaiUKo

    Многолопастной вертикальный ветрогенератор. Если рассматривать только коммерческие образцы – этот тип ротора является наиболее производительным и дает наименьшую нагрузку на несущие детали. Внутри такого вертикального ветряка содержится дополнительный ряд статичных лопастей, которые направляют поток воздуха таким образом, чтобы максимально увеличить эффективность ротора. Недостатки:

    • Высокая стоимость устройства из-за большого количества деталей.

Источник: https://contur-sb.com/rotor-dare-konstruktsiya-printsip-raboty/

Что такое ротор Дарье и как сделать его своими руками

Ротор дарье конструкция принцип работы

27 июня 2019

Ротор (или турбина) Дарье — это устройство, широко применяющееся в ветроэнергетике. Разработка принадлежит авиаконструктору Жоржу Дарье. Главное преимущество — способность работать при любых направлениях воздушного потока и при неблагоприятных погодных условиях.

Устройство конструкции

Конструкция ротора проста. Трое аэродинамических крыльев закреплены на радиальных балках. Существуют три типа турбины Дарье:

  • Классический. Лопасти имеют форму полумесяца. Их размер достаточно большой — почти сравним с длиной основной оси. Основание имеет прочный устойчивый полукруглый фундамент.
  • Тип Н. Три крыла, имеющие прямую форму и расположенные относительно горизонтальных опор под прямым углом, находятся на верхнем отсеке конструкции. Опоры крепятся к несущей оси. Достоинства этой конструкции — быстроходность, высокая эффективность, полное отсутствие инфразвука. Ротор Н-образного типа прост в сборке и ремонте, надежней классической ветровой турбины Дарье, дешевле — и поэтому распространен в применении.
  • Винтообразный тип. Лопасти изготовлены в виде изогнутых спиралей. Они также расположены на верхнем отсеке несущей оси вращения. Благодаря закрученной форме крыльев, вращение ротора происходит равномернее. Благодаря этому нагрузка на несущие узлы снижается, а срок службы механизма увеличивается.
Читайте также  Реле РТВ принцип действия

Для обеспечения работы бытовых электростанций чаще всего используется ротор Савониуса Дарье. Такое название носит ветровая турбина, совмещенная с ротором Савониуса, который выступает в роли стартёра (устройства запуска). Комбинированная конструкция отличается большей мощностью и производительностью по сравнению с «чистыми» типами. Область применения механизма не ограничивается только электростанциями — он может быть совмещен с теплогенератором и быть использован в системе теплоснабжения. А еще такой гибрид соединяют с насосами и применяют для закачки и откачки воды.

Каждый из трех типов имеет свои недостатки. Классическая ветровая установка обладает меньшей эффективностью. Установке с ротором Дарье необходимы генераторы. Самостоятельно она запускаться и раскручиваться не может. При сильных, ураганных порывах ветра механизм может начать функционировать самостоятельно, при этом процесс трудно поддается контролю.

[su_box style="default" title="" box_color="#475904" radius="0"]

Устройство Н-образного типа легкое в эксплуатации, но быстро изнашивается из-за больших аэродинамических нагрузок. Спиральный ветрогенератор за счет своей конструкции надежней, но технология его изготовления сложна, поэтому он стоит дорого.

[/su_box]

Неоспоримое достоинство ротора всех видов — отсутствие зависимости от силы и направления ветрового потока. Допустимо расположение на прилегающей территории иных сооружений, что облегчает проведение ремонтных работ.

Ротор Дарье своими руками

Для работы понадобятся:

  • генератор;
  • лопасти;
  • болты для крепления;
  • шкурка для обработки;
  • металлические опоры;
  • мачта или иная деталь, подходящая на роль оси вращения;
  • инструменты (сверло, молоток и т.п.).

Лопасти можно приобрести в магазине или сделать из подручных материалов. Например, подойдут обрезки труб из поливинилхлорида.

https://www.youtube.com/watch?v=z2kGfV_vCDY

Сначала выполняется чертеж. Затем подготавливается каждая деталь — лопасти нужно ошкурить, в опорах просверлить отверстия для крепежа. Проводится соединение опор с аэродинамическими крыльями.

На заранее приготовленное основание устанавливается ось. Основанием может служить бетонная заливка, металлическая конструкция. К оси крепятся лопасти.

Для подключения генератора необходимо владеть базовыми познаниями в электротехнике. В противном случае лучше доверить это дело профессионалу. После подключения генератора проводятся предварительные испытания. Устраняются неполадки и недостатки (если они обнаружены). Самодельный ротор будет служить дополнительным источником энергии.

Источник: https://altenergiya.ru/veter/rotor-darie.html

ВЕТРОГЕНЕРАТОР: СТОИТ ЛИ УСТАНАВЛИВАТЬ и КАКОЙ ТИП ВЫБРАТЬ. Часть 1 (принцип действия и особенности конструкции)

Ротор дарье конструкция принцип работы

Бурное развитие технологий плюс все явственней ощущаемое по таянию ледников и участившимся сильнейшим ураганам изменение климата способствуют активному освоению нетрадиционных источников энергии. Не прошло и десятилетия как солнечные панели и ветрогенераторы из дорогой экзотики стали привычным элементом ландшафта.

Солнечный свет и ветер не требуется добывать. Их запасы неисчерпаемы, то есть они исчезнут вместе с нашей планетой. И при освоении не выделяются парниковые газы. К тому же многих владельцев частных домов привлекает полная автономия в вопросах электроснабжения. Однако выбирая ветрогенератор, следует знать особенности и условия работы установок разных типов.

Работа ветроэнергетической установки (ВЭУ) базируется на преобразовании посредством специального аэродинамического устройства (ветродвигателя) кинетической энергии ветра в механическую энергию вращения вала, которая затем трансформируется в электрическую.

Основными конструктивными элементами установки являются ротор (ветродвигатель), редуктор-мультипликатор и электрогенератор. Под действием набегающего потока воздуха осуществляется вращение ротора, которое посредством редуктора доводится до стандартизированной для генератора частоты.

Ротор представляет собой собранные в ветроколесо/крыльчатку и соединенные с валом лопасти определенной формы. Вал, по сути, есть осью вращения такой конструкции и по его ориентации относительно направления ветра все ВЭУ подразделяются на два основных типа – горизонтально или вертикально осевые.

ГОРИЗОНТАЛЬНО-ОСЕВЫЕ ВЕТРОЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ

Горизонтально-осевые агрегаты характеризуются ориентированной параллельно набегающему воздушному потоку осью вращения. Такое же расположение ветроколеса имели столетиями украшавшие европейские сельские пейзажи ветряные мельницы. А сегодня им на смену пришли трехлопастные ветрогенераторы.

На современном уровне развития ветроэнергетики именно такие установки имеют широкое распространение как при промышленном, так и автономном электроснабжении. И ввод в эксплуатацию все новых устройств набирает обороты.

Созданные на данный момент горизонтально-осевые ветрогенераторы наиболее быстроходные. Быстроходность u определяется соотношением линейной скорости лопасти ротора к скорости набегающего воздушного потока. Когда u≥4 агрегат считается быстроходным.

К тому же горизонтально-осевые установки характеризуются самым высоким коэффициентом использования ветра. Поэтому такие ветрогенераторы с быстроходностью u = 5÷7 являются на данный момент наиболее мощными.

У подобных ВЭУ редуктор, генератор, системы управления и контроля располагаются в играющей роль машинного отделения гондоле. Она вместе с ротором устанавливается на вершине мачты или башни, стоящей на надежном фундаменте.

Для эффективной работы плоскость вращения ветроколеса должна быть перпендикулярной воздушному потоку. Поскольку ветер изменчив, то приходится его «ловить», поворачивая гондолу с ротором. Это требует мощного привода и усложняет передачу выработанной электроэнергии от генератора в сеть потребителя. Скручивание силовой шины предотвращают или ограничением угла поворота, или делая разрыв с применением токосъемника.

https://www.youtube.com/watch?v=-vDNfyorv5o

Кроме того у них имеется определенный эксплуатационный диапазон скоростей ветра. С одной стороны он ограничен расчетным/рабочим значением vp, а с другой критическим или буревым – vmax. В этом диапазоне установка развивает свою номинальную мощность. При превышении vmax, чтобы агрегат не пошел в разнос, его тормозят. Для поддержания постоянной скорости вращения ротора и обеспечения торможения применяется система поворота лопастей.

Мегаваттные быстроходные трехлопастные (гораздо реже с двумя или одной лопастью) горизонтально осевые ВЭУ уже обеспечивают в качестве основного источника электроснабжения целые города в США, Китае и Европе. При таком использовании несколько установок обычно объединяют в единую систему – ветропарк.

Такие ветропарки могут иметь не только наземное базирование, но и располагаться на территории морских акваторий. Главное, чтобы при этом установки по максимуму использовали энергию ветра не создавая одна другой ветровой тени, то есть не направляя на стоящую позади уже отработанный воздушный поток.

Для автономного электроснабжения загородных домов и индивидуальных хозяйств разработаны тихоходные горизонтально-осевые ВЭУ мощностью до 30 кВт.

ВЕРТИКАЛЬНО-ОСЕВЫЕ ВЕТРОГЕНЕРАТОРЫ

Вертикально-осевые установки характерны тем, что их ось вращения ориентирована перпендикулярно набегающему потоку воздуха. На ветряных мельницах подобного типа веками мололи зерно в Персии, Китае и других странах Азии. Как правило, их лопастями были прямоугольные деревянные или тканевые «паруса».

Редуктор-мультипликатор и электрогенератор у такого типа ВЭУ расположены внизу, что повышает устойчивость конструкции и облегчает техническое обслуживание. Такому агрегату не требуется «ловить» ветер, поэтому нет необходимости в системе ориентации и нет проблемы скручивания силовой шины.

Так же не нужно поворачивать лопасти – ветрогенератор работает с переменной частотой вращения, запускаясь при небольшой скорости ветра и выдерживая ураганы и песчаные бури с порывами до 60 м/с.

[su_box style="default" title="" box_color="#F27405" radius="0"]

Ему не страшен мокрый снег и обледенение. Эксплуатировать подобные установки можно практически в любых климатических условиях – от жары пустынь до арктических морозов.

[/su_box]

Такого типа ВЭУ отличаются большим разнообразием форм роторов. Чаще других используется ротор Савониуса (Savonius rotor), классический ротор Дарье (Darrieus rotor) и его варианты – модернизированный и более надежный Н-образный и геликоидный (усовершенствованный Горловым).

У роторов Дарье при небольших скоростях ветра выше быстроходность, но существует проблема самозапуска. Поэтому их для предварительного разгона нередко дополняют роторами Савониуса.

Пока что разработанные вертикально-осевые ветрогенераторы более тихоходны (у подавляющего большинства u≤3) и конкурируют в эффективности с горизонтально-осевыми при мощностях до 10 кВт. Это способствует быстрому росту их популярности среди владельцев загородных участков. Они активно внедряется в установках для автономного уличного освещения. Хотя и гораздо реже такого типа ВЭУ также объединяют в ветропарки.

Рассмотрев выше конструкционные особенности установок, в следующей части перейдем к обсуждению условий эксплуатации, возникающих при работе ВЭУ негативных явлений и сравним ветрогенераторы разных типов.

Источник: http://komfortnyj-dom.info/vetrogenerator-princip-dejstviya-i-osobennosti-konstrukcii.html

Чем лучше и чем хуже вертикальный ветрогенератор в плане эксплуатации

Ротор дарье конструкция принцип работы

Использование энергии ветра для выработки электричества – одна из перспективных форм развития альтернативной энергетики. Вертикальный ветрогенератор является перспективным направлением развития отрасли, т.к. имеет ряд преимуществ по сравнению с горизонтальными аналогами.

Читайте также  Мокрое сцепление принцип работы

Плюсы вертикальной оси

Положительные качества всех вертикальных ветрогенераторов:

  1. Не направляются по ветру, работают при любой его направленности.
  2. В отличие от ветрогенераторов с горизонтальной осью, имеет только одну ось вращения, следовательно бо́льший срок службы.
  3. Возможна установка на небольшой высоте — от 1,5м, в зависимости от модели.
  4. Все важные подвижные элементы находятся в нижней части генератора, что позволяет удобно его обслуживать.

    Важно. При необходимости вал ротора увеличивается до необходимой длины для удобства доступа к статору, без существенной потери КПД.

  5. Возможность собрать действующий ветрогенератор своими руками из подручных материалов.
  6. Благодаря возможности создания жесткой конструкции с несколькими точками опоры, вертикальные ветрогенераторы работают при бо́льшей максимальной скорости ветра.
  7. Более высокая устойчивость к разрушающему воздействию ветра.
  8. В этих ветряках возможно создание собственной циркуляции воздуха, за счет чего образуется быстроходный эффект, когда линейная скорость лопастей в 20 и более раз превышает скорость ветра.

Минусы

  1. Громоздкость конструкции. Самые легкие вертикальные ветряки весят не менее 300 кг вместе со стойкой.
  2. Низкая эффективность по сравнению с горизонтальным.
  3. Шумность. Ветряк издает шум от лопастей во время работы.

. Геликоидный ветрогенератор

В ролике наглядно показана работа геликоидного ветряка, установленного на специальной мачте

Бестопливный генератор — способ заработать на безграмотности Реальное применение тонкопленочных солнечных батарей Подбираем аккумулятор для солнечной электростанции Как выбрать солнечную панель — обзор важных параметров

Все права защищены © 2019

«Электрика в доме»

Источник: http://electricadom.com/plyusy-i-minusy-vertikalnykh-vetrogeneratorov-ikh-vidy-i-osobennosti.html

Ветрогенераторы: принцип действия, типы, применение, эффективность работы — Альтер Эйр

Ротор дарье конструкция принцип работы

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) – это прибор для превращения энергии ветра в электрическую. 

Сначала он превращает кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию. Мощность ветрогенератора может быть от 5 КВт до 4500 КВт. Современные устройства генерируют энергию даже очень слабого ветра – от 4 м/с. Ветроэлектрические установки могут входить в состав частной независимой электростанции и позволяют продавать излишнюю энергию государству по условиям «зеленого тарифа». Такие сооружения могут быть источником энергии для локальных и островных объектов, так как решают проблемы энергоснабжения автономно.

Как работает ветрогенератор: принцип преобразования энергии ветра

Потоки ветра вращают лопасти ветрогенератора: проходят через турбину, приводит её в действие и она начинает вращаться. На валу турбины возникает энергия, которая будет пропорциональна ветровому потоку. Чем сильне ветер, тем большее количество энергии возникает.

Далее энергия передается по валу ротору на мультипликатор (если он есть), который её генерирует.

Учтите, что более продуктивными являются устройства без мультипликатора, который ускоряет вращение оси, потому что не создается, а, естественно, и не растрачивается лишняя энергия, а скорости ветра вполне достаточно для оптимальной работы ветрогенератора.

https://www.youtube.com/watch?v=z1luyyrzFc0

Генератор превращает механическую энергию в электрическую.

Мощность ветряка измеряется «ометаемой» площадью турбины.
Чем больший размер лопастей, тем большую мощность он создает.

Мощность ветрогенератора рассчитывается исходя из кубической зависимости скорости ветра.

Пример:

Если ветровой поток со скоростью n создает мощность 100 Вт, то поток со значеним n+1 будет создавать мощность 300 Вт, а вот n+2 – уже 900 Вт.

Поэтому, если размер турбины не большой, то нужен очень сильный поток ветра, чтобы мощность была высокой, и наоборот – большая турбина может выдавать ту же мощность при более слабом ветре.

Но для того, чтобы работа ветрогенератора была сбалансированной и выдавала нужное количество энергии нужно на этапе проектирования правильно рассчитать все необходимые параметры ветряной электростанции.

Конструкция ветряка:

  • Мачта (может быть трубчатого типа или «ферма»):
  • Турбина – это ротор, предназначенный для того, чтобы превратить энергию прямолинейного движения воздушного потока;
  • Система управления турбиной;
  • Генератор преобразовывает энергию ветра в электрическую;
  • Ланка передачи энергии (мультипликатор или сам вал);
  • Выпрямитель (поскольку зачастую в ветряках используются генераторы переменного тока для того, чтобы правильно зарядить аккумулятор или отправить энергию в сеть (бытовой сегмент));
  • Система азимутального привода или хвост (иногда устанавливаются машины, у которых к ветряку прикрепляется «хвост», он ориентируется по ветру самостоятельно).

По мощности и области применения ветрогенераторы бывают:

  • промышленные (мощность от 500 КВт);
  • бытовые (мощность 0-10 КВт).

Устройства с мощностью от 10 до 500 КВт используются крайне редко.

По конструкции бытовые типы ветряков отличаются конструкцией ротора (турбины):

  1. С горизонтальной осью. Отличаются системой управления турбины (ротора), она может быть:
  • аэромеханической (на лопастях установлены специальный «закрилышки», которые меняю угол направления ветра: чем больше скорость ветра, тем больше угол атаки лопастей и наоборот). Меняя угол атаки, мы можем управлять турбиной как на малых, так и на больших скоростях для эффективной и правильной работы устройства.

  • с азимутальным приводом (электроника фиксирует скорость и направление ветра, поворачивает или отворачивает турбину от ветра, если скорость ветра превышает номинальную).
  1. С вертикальной осью – это малоэффективные устройства, которые не рекомендовано использовать из-за ряда недостатков.
    Они отличаются типом турбин:
  • ротор Савониуса (Savonius). Их недостатком является коэффициент опережения.

    Если скорость ветра 10 м/с, то законцовка турбины будет вращаться со скоростью 100 м/с, соответственно, коэффициент опережения – 10. Фактически ветряк не может самостоятельно стартовать, его нужно раскручивать и только после этого он начинает работать. Если этого не делать, то он начет вырабатывать энергию только при скорости ветра 10 м/с и больше.

  • ротор Дарье (Darrieus). Применяются разве что как анемоскопы, так как малоэффективные.

Сейчас широкое применение получили ветрогенераторы с горизонтальной осью вращения (крыльчатые), благодаря тому, что у них коэффициент использования энергии ветрового потока (КИЭВ) легко достигает 30% и больше, а у ветрогенераторов с вертикальной осью вращения КИЭВ составляет около 20%. 

Система бытового энергоснабжения с использованием ветрогенератора похожа на систему с солнечными модулями, в одной системе могут использоваться как ветрогенераторы, так и солнечные модули.

https://www.youtube.com/watch?v=3wK3j6yK9dQ

От высоты мачты и диаметра ротора зависит количество выработанной энергии следующим образом: на каждые 10 метров подъёма ветряка добавляется 1 м/с скорости ветра. Чем выше мачта, тем больше вероятность того, что он будет работать максимально эффективно. И та же ситуация с ротором: чем больше диаметр, тем больше выработка энергии.

Значения силы ветрового потока для работы ветряка:

  1. Скорость ветра для начала вращения лопастей, при котором мощности нет вообще – от 1,5 м/с.
  2. Минимальная скорость ветра при которой уже начинается генерация мощности – 3 м/с.
  3. Номинальная скорость ветра (для ветрогенераторов украинского производства) – 7-9 м/с.
  4. Максимальная скорость ветра, при которой ветрогенератор украинского производства сохраняет свою работоспособность– 52 м/с (200 км/час), что свидетельствует о высоком качестве сборки установки и прочности материалов изготовления.

Применение и рекомендации по месту установки ветрогенератора

Ветрогенераторы характеризуются широким применением на объектах различного назначения: частные дома и домохозяйства, предприятия, отдельные сооружения, которые требуют автономного энергоснабжения.

Их устанавливают на открытых, желательно возвышенных территориях, где есть хороший ветровой потенциал: поле, горы (холмы), остров и даже мелководье.

Ветрогенераторы могут устанавливаться как по одиночке так и группами, объединяясь в ветропарк для энергоснабжения масштабных предприятий.

[su_box style="default" title="" box_color="#BF0404" radius="0"]

Чаще всего ветряные электростанции применяются для энергоснабжения автономных зданий, где отсутствует подключение к городской электросети.

[/su_box]

Маломощные ветряки используются на охотничьих угодьях, рыбацких станах, на дачных участках для пчеловодов, на автономных светильниках для освещения дорог.

Учитывайте, что во время работы ветряная установка может издавать небольшой шум, поэтому желательно сооружать её не под самыми окнами жилого дома. Так как этот звук не громкий, то к нему легко привыкнуть. И, кстати, домашним животным, у которых слух намного чувствительнее, чем у человека, он тоже не мешает.

В настоящее время применение ветрогенераторов как альтернативы центральному энергоснабжению нерентабельно из-за большой стоимости оборудования, но, в то же время, возможно использование ветрогенераторов в местах, где отсутствует централизованное энергоснабжение или присутствуют частые перебои. Период окупаемости – 25 лет.

[su_quote]

Также существует техническая возможность исполнения генератора выдающего переменный ток, который можно использовать для прямого питания потребителей, которые не требуют бесперебойного питания, к примеру, насос для осушения какой-нибудь территории.

[/su_quote]

В Украине на всей территории возможно использование ветрогенераторов с той или иной степенью эффективности. Наиболее выгодно, с точки зрения ветрового потенциала, размещать ветрогенераторы в Крыму и Закарпатье.

Источник: https://alterair.ua/articles/vetrogeneratoryi/

]]>