Релейная защита для чайников

Основные понятия о релейной защите

Релейная защита для чайников

Основным видом электрической автоматики, направленной на сохранение работоспособности современных энергетических систем и её элементов, является релейная защита. Защищает она электрическое оборудование от опасных последствий ненормальной работы. За счёт релейной защиты происходит полная ликвидация аварийных режимов путём отключения от сети, тем самым также происходит изоляция повреждённого элемента от сети электроснабжения. Она тесно работает с другими видами защит такими как:

  1. АПВ — автоматическое повторное включение;
  2. АВР — автоматическое включение резерва;
  3. АЧР — автоматическая частотная разгрузка.

Данные защиты предусмотрены и чётко регламентированы в правилах устройства электроустановок (ПУЭ). Представляет собой она электрическую схему, которая состоит из одного или группы реле срабатывающих только при определённых аварийных условиях.

При этом все ее сработанные виды должны быть визуально зафиксированы за счёт сигнальных реле, которые называются блинкерами. В состав релейной защиты могут быть включены как одиночные реле, так и целые группы, состоящие из нескольких десятков реле. Это количество зависит от сложности включаемого потребителя и важности схемы электроснабжения.

За счёт неё происходит определение аварийного или повреждённого участка цепи, а также характер неисправности.

Назначение релейной защиты

Во время проектирования любой электрической схемы снабжения обязательным является расчет релейной защиты автоматики (РЗА). Если сказать простыми словами, то она служит для того, чтобы при коротком замыкании, или другом ненормальном режиме работы в схеме потребителя, эти перегрузки не повлияли на работы другого оборудования. Если они, конечно, завязаны все в одной энергетической системе.

При возникновении короткого замыкания напряжение в цепи падает, зато ток возрастает до максимального значения. Этот факт может повлечь за собой не только возгорание, но и выход со строя всей питающей сети, если бы в таких аварийных случаях релейная защита вовремя не отключала данный повреждённый участок.

Для начинающих упрощённую РЗА в действии можно увидеть в быту при замыкании фазного и нулевого провода. При этом отключается автомат, питающий данную сеть, в котором установлена токовая отсечка.

Аварийных ситуаций на подстанции или на производстве может быть больше это и перенапряжение, и выделение газа при неисправности трансформатора и т. д.

Работа и назначение релейной защиты организована на постоянном контроле, а также оценке технических и электрических параметров оборудования и цепи, которую она должна защищать. Зачастую устройства данной релейной автоматики скомпонованы в элементах электрических сетей и объединены в единую систему.

Требования к релейной защите

её задача — это надёжно защищать оборудование и цепи электроснабжения от работы в неисправном, аварийном состоянии. Соответственно к ней существует ряд требований, выполнение которых проверяется регулярно лабораторией или специальными службами. Вот основные требования к релейной защите:

  1. Быстродействие. Способность защиты работать с минимальной выдержкой времени после наступления аварийной ситуации. Правда, одни из них специально разработаны на срабатывание с определённой установленной выдержкой времени это зависит от условий работы электрооборудования и назначения конкретного вида релейной защиты;
  2. Селективность. Это вид избирательности защиты, направленный на отключение только определённых ближайших участков к месту аварии или короткого замыкания;
  3. Чувствительность. Способность защиты направленная на реагирование её только на данные отклонения, на которые она настроена;
  4. Надёжность. Безотказность системы защит и недопущение ложных срабатываний.

От этих четырёх основных требований напрямую зависит эффективность функционирования релейной защиты любого электрического оборудования и цепей.

Классификация реле

Все применяемые реле в системе могут быть выполнены на основе определённого оборудования. Релейная защита может быть выполнена на следующих типах реле:

Электромеханической конструкции. Принцип их действия основан на притягивании и отпускании подвижной части реле при прохождении, через катушку электромагнита, электрического тока. При этом происходит размыкание или замыкание контактов;

  • Полупроводниковые. Они изготавливаются на основе полупроводниковых приборов (диодов, транзисторов, тиристоров) которые выполняют роль электрического ключа в схеме;
  • Цифровые. Основаны на работе микропроцессорной техники, обработка данных происходит не в аналоговом, а в цифровом формате, образуя блок релейной защиты. Существует возможность программирования таких цифровых устройств, что добавляет в работу РЗА автоматизации без участия персонала.

Устройства РЗА можно разделить также и по сложности их применения. К простым относятся:

  1. Максимальная токовая или токовая отсечка. Она применяется даже в обычных автоматических выключателях, применяемых в быту;
  2. От минимального и максимального напряжения. В быту это так называемые устройства барьеры.
  3. Дифференциальная, которая основана на сравнении токов, проходящих по каждой из фаз;
  4. Газовая. Это одна из разновидностей защит трансформаторов от выхода из нормального рабочего режима работы;
  5. Замыкание на землю. Срабатывает при пробивании изоляции или касании токопроводящих частей к земле.

Сложные виды РЗА включают в свой состав:

  1. Устройства контроля изоляции как цепей постоянного таки переменного тока;
  2. Системы отбора напряжения;
  3. Различные системы контроля температур, давления и других параметров оборудования;
  4. Контроль и наблюдение за сопротивлением изоляции цепей аккумуляторных батарей и т. д.

Чтобы добиться надёжности и правильной работы электрических аппаратов входящих в данную защиту, нужно чтобы все элементы были выполнены из качественных комплектующих таких как реле, трансформаторов тока и т. д. В настоящее время релейная защита это очень популярная и востребованная часть электроэнергетики.

Источник: https://amperof.ru/elektropribory/osnovnye-ponyatiya-o-relejnoj-zashhite.html

Релейная защита: что это такое и когда применяется. Инструкция подключения системы и особенности расчета ее характеристик

Электрические сети служат для передачи и коммутации электроэнергии от генерирующих станций к потребителям. При эксплуатации возникают аварийные ситуации, требующие немедленного мгновенного реагирования. Нештатная ситуация может в короткий промежуток времени привести к порче большого перечня дорогостоящих комплектующих и отключению большого числа потребителей.

Потери бывают очень существенными, так как в сетях осуществляется передача энергии большой мощности. Ещё на заре электроэнергетики в конце 19 века на линии энергоснабжения начали устанавливаться первые простые системы повышения надежности.

Ими служили обыкновенные плавкие предохранители, которые срабатывали при превышении тока выше номинального и минимизировали ущерб при развитии таких нештатных режимов работы потребителей как короткое замыкание.

Современные аппараты работают по принципу реле. Они непрерывно отслеживают один или несколько параметров и при отклонении выше существенного мгновенно срабатывают и выполняют необходимые действия по коммутации схемы электроснабжения. Этот обзор раскрывает общие сведения о защите, как и для каких целей она применяется.

Первые блоки релейной защиты представляли собой простые электромеханические изделия, в которых происходило механическое размыкание контактов с помощью реле при выявлении отклонений. В современных конструкциях зачастую применяются полупроводниковые приборы, которые отключают потребителя без физического размыкания контактов. Такие изделия отслеживают множество опасных изменений в системе.

Основные требуемые характеристики релейной защиты не изменились: от них требуется мгновенное реагирование на опасные изменения, на которые человек не в состоянии быстро ответить, они непрерывно находятся в рабочем состоянии.

Читайте также  Защита однофазного электродвигателя от перегрузок

Благодаря им поддерживается безопасность и работоспособность энергетических систем, надежно и безопасно передается электрическая энергия. Все новые конструкции реле обладают неизменно лучшими характеристиками по сравнению со своими предшественниками.

Классификация

Всё разнообразие приборов релейной защиты классифицируется по следующим основным признакам:

По типу подключения они бывают первичными и подключаются непосредственно в электрическую сеть. Вторичные приборы подсоединяются в неё с помощью трансформатора, дающего гальваническую развязку.

По исполнению они выпускаются электромеханическими: в них сеть замыкается и размыкается с помощью механических контактов. В современных электронных аппаратах цепью управляют полупроводники, при этом не происходит физического размыкания контактов.

По назначению оно может выполнять две задачи: логическую и измерительную функции. Логические приборы принимают решение на основе изменяющихся внешних характеристик системы. Измерительные аппараты производят только замер её значений.

По методу работы приборы классифицируются на прямые и косвенные изделия. Изделия прямого действия механически связаны с блоком отключения, а косвенные управляют механизмом отключения электропитания.

Виды

Релейная автоматика может осуществлять контроль за следующими основными параметрами линии электропередач и оборудования и при достижении опасных значений выполняет его отключение:

Максимальный ток. При достижении тока выше определенного значения срабатывает отключающее реле.

Направление мощности. Такой вид контроля помимо величины тока учитывает его направление.

Разница токов на входе и выходе в оборудование. Он бережет генераторы и трансформаторы с помощью сравнения параметров на входе и выходе. При достижении опасных характеристик производится отключение потребителей.

Контроль за масляной средой в трансформаторах. При опасных режимах работы масло в трансформаторе начитает разлагаться и испаряться. Он отслеживает начало этого процесса и отключает трансформатор до его возможного возгорания.

Логические приборы определяют места коротких замыканий и позволяют отключить опасный участок.

Пониженное и повышенное напряжение. При наличии коротких замыканий напряжение понижается. Повышение напряжения может быть вызвано ударом молнии. Любое изменение напряжения опасно для оборудования и электрических сетей. При изменении значений автоматика отключает линию.

Автоматическая разгрузка линии при снижении частоты тока в ней. При снижении частоты тока в электросети автоматика отключает часть потребителей. При повышении частоты необходимо наоборот нагружать сеть, для снижения частоты вращения генератора.

Исходя из этого перечня выполняемых задач, становится понятно, для чего нужна релейная защита. Но существуют изделия, которые осуществляют не выключение, а автоматическое подключение потребителей. Оно может осуществляться для повторного включения энергоснабжения через заданный интервал времени или для автоматического ввода резервной мощности. В этом случае в сеть вводится дополнительные генерирующие мощности для компенсации дефицита.

Устройство

Релейное управление постоянно совершенствуется, разрабатываются новые конструкции, применяются новые полупроводниковые схемы. Но принцип действия релейной защиты остается, он не зависит от прогресса.

Все аппараты состоят из четырех стандартных типовых частей. К ним относятся элементы наблюдения, логики, исполнения и сигнализации. Блок наблюдения следит за процессами и отслеживает его параметры. Блок логики принимает решение если наступает отклонение измеряемых характеристик от заданных значений. Исполнительный блок выполняет необходимые действия при подаче команды. Сигнальный блок предназначен для человека.

В сетях процессы протекают с очень большой скоростью. При наступлении события происходит сохранение информации о нем, которая доступна потом оператору. Для этого используют различные сигнальные лампы, использующие визуальное или звуковое оповещение.

Принципы проектирования

Несмотря на то, что на фото все блоки релейной защиты выглядят одинаково, выпускается они в различных конфигурациях и разными производителями. При проектировании к любым компонентам применяются одинаковые требования к работоспособности.

Чтобы оборудование исправно работало и не давало ошибочных срабатываний при проектировании необходимо придерживаться следующих четырех требований. Это надежность, чувствительность к срабатыванию, быстродействие и селективность. Надежность характеризуют следующие свойства: безотказность, ремонтопригодность, длительный срок эксплуатации и сохранность.

Чувствительность характеризует процентное превышение измеряемого параметра, необходимое для срабатывания. Быстродействие определяется сложением времени срабатывания логического блока управления и времени необходимого для выключения системы.

В некоторых случаях требуется задержка срабатывания. Для этого в него вводятся специальные реле. В большинстве случаев требуется мгновенное срабатывание. В новых выпускаемых конструкциях добиваются сокращения этого времени и достижения максимального быстродействия.

Селективность или избирательность позволяет локализовать место аварии. Благодаря резервированию неисправный участок отключается, и электроэнергия подается в обход его по исправным каналам. Конструкция устройств должна при необходимости позволять оперативно исключать аварийные участки и перенаправлять электроэнергию по резервным каналам.

Фото релейной защиты

Источник: http://electrikmaster.ru/relejnaya-zashhita/

Работа с логическими схемами РЗА

С появлением микропроцессорных терминалов и контроллеров в жизнь энергетиков прочно вошли логические схемы. Это наиболее точный способ описать принципы работы современной релейной защиты, когда на принципиальной схеме множество элементов заменены одним “черным ящиком”.

Если вы хотите работать релейщиком, то вам необходимо уметь читать логические схемы также хорошо, как и принципиальные. Скажу больше – если вы имеете дело с микропроцессорной защитой и автоматикой, то принципиальная схема не имеет никакого смысла без логической. Одна является обязательным продолжением другой.

К счастью, научиться читать логические схемы достаточно просто, особенно если вы раньше работали с “электромеханикой”. Это так потому, что логические элементы можно заменить на небольшие релейно-контактные схемы, которые может прочесть любой релейщик.

Сегодня мы поговорим как раз о том, как это сделать.

Итак, рассматриваем пять наиболее распространенных логических элементов, создаем их схемы замещения на привычных контактах и катушках реле, а после рассматриваем пример перевода большой логической схемы в электромеханическую.

Статья будет полезна как начинающим релейщикам, так и тем, кто переходит с “электромеханики” на микропроцессорную релейную защиту. Поехали!

Наличие сигнала на определенном участке логической схемы обозначается как “1”, а отсутствие – как “0”. Для релейно-контактной схемы аналогия будет следующая: “1” – наличие оперативного напряжения на участке цепи (например, на катушке реле), а “0” – отсутствие напряжения.

В обычных схемах оперативное напряжение подается на участок цепи при помощи контакта (реле, ключа, блок-контакта и т.д.) Это означает, что логические элементы можно заменить контактами, соединенными определенным образом. Сделаем это.

Читайте также  Защита от гидроудара в системе водоснабжения квартиры

Самые распространенные элементы, которые вы найдете в любой логической схеме – это “ИЛИ”, “И”, “НЕ”, “ТРИГГЕР” и “ТАЙМЕР”. Пороговые элементы (сравнение с уставкой) пока трогать не будем, для упрощения.

Логическое сложение «ИЛИ»

Правило работы «ИЛИ»: если на каком-либо одном или на обоих входах есть логическая «1», то на выходе тоже появится «1».

Для пояснения приведем Табл.1, где в первом и втором столбцах указаны значения входных сигналов, а в третьем — значение выходного. Как видно, при наличии хотя бы одного входного сигнала, мы получаем сигнал на выходе.

Какой релейно-контактной схеме это соответствует? Конечно параллельному соединению контактов (см. Рис.1) При этом контакты имитируют наличие/отсутствие входного сигнала, а катушка реле — выходной сигнал.

Вместо катушки может быть подключен следующий элемент, если наш элемент «ИЛИ» не является последним.

Стоит отметить, что входных сигналов у элемента «ИЛИ» может быть 2 и более (неограниченно).

Логическое умножение «И»

Правило работы «И»: на выходе появится «1», только если на обоих входах будут логические «1», в противном случае на выходе всегда будет «0».

Таблица 2 показывает зависимость между входными и выходными сигналами.

Элемент «И» соответствует последовательному соединению контактов — см. Рис.2

Логическая инверсия «НЕ»

Правило работы «НЕ»: если на входе присутствует «1», то на выходе будет «0», и наоборот. Инверсия меняет сигнал на противоположный.

Зависимости входного и выходного сигнала указаны в Табл. 3

Построить релейно-контактную схему для элемента «НЕ» сложнее, чем для первых двух. Здесь требуется применить промежуточное реле Х, с нормальнозамкнутым контактом — см. схему на Рис. 3.

Когда контакт А замыкается, контакт Х размыкается и обесточивает катушку С. И наоборот. Таким образом, мы получили релейно-контактную схему замещения инверсии.

RS-триггер

Триггер является элементарной ячейкой памяти, т.е. этот элемент запоминает значение выходного сигнала даже при исчезновении входного.

Правила работы «RS-триггера»:

При появлении на входе S логической «1», на выходе Т появится «1», но только если на входе R будет логический «0» (нет сигнала). При исчезновении сигнала на входе S, сигнал на выходе Т останется равным «1», т.е. триггер запомнит свое состояние. Сигнал на выходе Т сбросится только тогда, когда мы подадим «1» на вход R.

Вход R обнуляет состояние триггера, т.е. когда на нем «1», то на выходе Т всегда «0», независимо от сигнала на входе S.

Можно еще сказать, что триггер «взводится» по S, а «сбрасывается» по R, причем приоритетным является именно вход R.

Таблица 4 показывает зависимости сигналов на входах и выходе триггера. Обратите внимание, на то, что если на обоих входах триггера «0», то состояние на выходе мы знать не будем. Для этого нужно провести анализ предыдущих воздействий.

Схема замещения триггера приведена на Рис. 4. Эффект запоминания достигается применением схемы самоподхвата промежуточного реле. Когда контакт А замыкается, промежуточное реле Y одним своим контактом воздействует на выходное реле С, а другим подхватывает свое срабатывание. При этом реле Y остается сработавшим даже при размыкании контакта А.

Приоритетный сброс триггера организуется при помощи размыкающего контакта В (R),который включается последовательно с катушкой реле Y.

Таймер

Таймер соответствует схеме с реле времени на Рис. 5. Думаю, здесь подробные пояснения не нужны.

Укрупненные схемы замещения

Если логическая схема состоит из нескольких элементов, то можно набирать релейно-контактную схему последовательно включая схемы замещения.

На Рис.6 показана схема замещения для последовательно включенных элементов «ИЛИ» и «НЕ»

Построение комплексной схемы замещения

Ниже приведен видеоролик, в котором показан пример построения схемы замещения относительно большой логической схемы.

Заключение

Если вы имели дело только с электромеханическими реле, а теперь переходите на микропроцессорные терминалы, то вам необходимо уметь читать схемы логики. Любую логическую схему релейной защиты и автоматики можно преобразовать в релейно-контактную принципиальную схему. Для этого нужно последовательно соединить все схемы замещения логических элементов.

После преобразования вы сможете быстро прочитать логику терминала или контроллера и разобраться в их работе. Через несколько примеров вы научитесь читать логические схемы без дополнительных преобразований, что позволит эффективно работать с современной релейной защитой.

Такой метод достаточно трудоемкий для повседневной работы, но полезен на период обучения работе с МП РЗА.

Источник: https://pro-rza.ru/rabota-s-logicheskimi-shemami-rza/

Электроника для чайников: что такое реле и зачем оно нужно. Устройство, типы, описание

Реле – это переключатель. Причем не совсем обычный. Когда в подъезде лампочка загорается от звука шагов, это не волшебство, это работает реле. В этой статье расскажем о назначении реле и принципе его работы.

Существует очень много типов и классификаций реле. Но мы поговорим не только о них, но и о том, что такое реле и как оно работает. Поехали!

Что такое реле

Определение реле таково:

Реле – это электромагнитное коммутационное устройство, предназначенное для установки и разрыва соединений в электрических цепях. Реле срабатывает при скачкообразном изменении входной величины.

Говоря проще, когда входная величина меняется (ток, напряжение), реле замыкает или размыкает цепь. При этом в зависимости от типа реле входная величина не обязательно имеет электрическую природу.

Слово «реле» происходит от французского relay. Это понятие обозначало смену почтовых лошадей или передачу эстафеты.

Как работает реле?

Во-первых, вспомним Джозефа Генри, с именем которого связано понятие индуктивности. Провод, по которому течет ток, является магнитом. Если мы намотаем провод витками на сердечник, то получится катушка индуктивности.

Как катушка индуктивности ведет себя в цепи переменного тока? Если катушку включить в цепь, то фаза тока в цепи будет отставать от напряжения. Другими словами, при максимальном значении напряжения ток будет минимален и наоборот.

Это связано с тем, что когда катушка включена в цепь, в ней возникает ЭДС самоиндукции, которая препятствует росту основного тока через катушку.

Теперь вернемся к реле. Простейшее электромагнитное реле состоит из электромагнита (катушки), якоря и соединяющих элементов. При подаче электрического тока на катушку она притягивает якорь с контактом, который замыкает цепь.

Чтобы представить все это, посмотрим на рисунок:

Устройство и вид электромагнитного реле

Здесь 1 — катушка, 2 — якорь, 3 — коммутационные контакты.

Реле имеет две цепи: управляющую и управляемую. Управляющая цепь – это цепь, через которую ток подается на катушку. Управляемая – цепь, которую и замыкает якорь при срабатывании реле.

Таким образом, реле позволяет контролировать большие токи в управляемой цепи при помощи слаботочной управляющей цепи.

На каждом реле есть обозначения контактов управляемой и управляющей цепи. Также на корпусе изделия указаны значения тока и напряжения, на которые рассчитано реле.

Обозначения на корпусе реле

Электромагнитное реле, рассмотренное выше, не работает мгновенно. После подачи тока на катушку должно пройти какое-то время, и лишь потом реле сработает. Это связано с таким явлением, как гистерезис. Гистерезис переводится с латинского как отставание или запаздывание.

Читайте также  Токовые реле защиты электродвигателя

Мы уже говорили про ЭДС самоиндукции, возникающую в катушке. Когда реле включается в цепь, в катушке начинает течь ток, но сила тока нарастает постепенно. Нарастание тока в катушке можно представить в виде петли гистерезиса. Когда нужное значение силы тока достигнуто, реле срабатывает.

https://www.youtube.com/watch?v=MNg9tfbEuy4

По этой причине реле не используются в самой быстродействующей аппаратуре, где время срабатывания должно быть сведено практически к нулю.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Типы реле

В зависимости от входной величины, на которую реагирует реле, бывают:

  • реле тока;
  • реле напряжения;
  • реле частоты;
  • реле мощности.

Также в зависимости от принципа действия различают:

  • электромагнитные реле;
  • магнитоэлектрические реле;
  • тепловые реле;
  • индукционные реле;
  • полупроводниковые реле.

Применение реле

В основном реле применяются для защиты силовой аппаратуры от перенапряжений, в электронике автомобилей. Реле также присутствуют во многих бытовых приборах. В чайнике используется тепловое реле. В каждом холодильнике есть пусковое реле.

Джозеф Генри изобрел реле в 1835 году. Первые реле нашли свое предназначение в телеграфии.

Например, логично предположить, что реле тока служит для контроля силы тока в цепи.

Так, при перегрузках на электродвигателе включается реле тока, которое своими контактами включает реле времени. По прошествии допустимого времени работы двигателя в режиме перегрузки реле времени разрывает цепь.

Блок реле тока

Конечно, сначала все это может показаться сложным и запутанным. Однако если начать разбираться и приложить немного усилий, вы в скором времени сами сможете не только рассказать про устройство и принцип действия реле, но и успешно заняться его подключением. А в будущем, возможно, стать специалистом по релейной защите.

Когда есть студенческий сервис, специалисты которого готовы оказать помощь в любое время, больше не нужно бояться трудных предметов и строгих преподавателей.

Напоследок видео, в котором подробно, наглядно и просто рассказывается о том, как работает реле:



Источник: https://Zaochnik.ru/blog/elektronika-dlya-chajnikov-chto-takoe-rele-i-zachem-ono-nuzhno-ustrojstvo-tipy-opisanie/

Что такое релейная защита?

Все энергосистемы образованы электростанциями, подстанциями, линиями электропередачи и установками потребителей энергии. В результате тех или иных событий в каждой из перечисленных составляющих энергосистем могут возникать различные повреждения и аварии. При повреждениях токи могут многократно увеличиваться, а напряжение генерируемое электростанциями и далее на подстанциях уменьшаться до неприемлемой величины.

При этом возникает зона высоких температур и даже разрушения вблизи места повреждения. В зоне высоких температур оказываются провода линий электропередачи и оборудование, для которых увеличение температуры может быть опасным. А понижение напряжения связанное с такими процессами может привести к нарушению устойчивости параллельной работы электростанций и нарушить нормальную работу подключенных к ним потребителей.

Ещё больше усугубляет эти процессы изменения частоты напряжения, особенно в сторону уменьшения. При этом существенно увеличивается вероятность насыщения магнитопроводов электрических машин, что дополнительно увеличивает величину токов и расширяет зону высоких температур.

Поэтому для сохранения целостности отдельных частей и энергосистемы в целом при возникновении повреждений и аварий, а также для сохранения нормального функционирования оборудования за пределами аварийного участка последний должен быть отключён и изолирован максимально быстро.

Многие аварийные ситуации поначалу являются допустимыми перегрузками. Однако просуществовав определённое время, такие перегрузки оборачиваются опасными последствиями. При своевременном изменении режимов перегрузки, можно было бы избежать их. Поэтому в случае необходимости лучше обесточить перегруженное оборудование. Обрабатывать данные и выполнять отключение в случае повреждений необходимо за доли секунды. Подобную скорость можно получить только средствами автоматизации.

Способ защиты, основанный на применении автоматических реле, называется релейной защитой.

Принцип действия

Непрерывный мониторинг всех элементов энергетической системы с реакцией на появление повреждений и аварийные режимы есть главные функции релейной защиты. В электрических цепях энергосистемы устанавливаются специальные выключатели.

Они выполняют отключение токов, которые появляются в результате повреждений и аварий. Защита должна определить участок с повреждением и воздействием на ближайший выключатель, который способен отключить участок от энергосистемы выполнить отключение.

Пример показан на изображении ниже:

Однако отключения это не единственное назначение релейной защиты. Защитные устройства должны различать свойства нарушения и по возможности либо автоматически выполнять действия для того чтобы нормальный режим в энергосистеме был восстановлен, либо сигнализировать соответствующим службам, которые смогут принять необходимые меры по этому нарушению.

В современных электросетях используются и другие группы устройств автоматики:

  • автоматическое повторное включение;
  • автоматическое включение резервного питания;
  • автоматическая частотная разгрузка.

Эти три основные группы лишь часть перечня. Релейная защита имеет с ними наиболее тесное и первостепенное взаимодействие.

Наиболее часто защитные системы устраняют различные виды короткого замыкания, показанные на изображении ниже:

Причинами таких повреждений могут стать:

  • межвитковые короткие замыкания в электрических двигателях и трансформаторах;
  • разрушение изоляционного материала в токоведущих частях со временем и под воздействием неблагоприятных факторов окружающей среды;
  • механические повреждения;
  • перенапряжения;
  • состояние проводов линий электропередачи при сильном ветре и гололёде;
  • оставленные подключенными и забытые после ремонта заземления.

В дополнение к перечисленным причинам повреждений в электрической сети могут возникать режимы с параметрами, выходящими за установленные значения для работающего оборудования, так называемые «ненормальные режимы»:

  • сверхток, который превосходит номинальный ток и дополнительно нагревает токоведущие части, а также их изоляцию сокращая срок их нормальной работоспособности;
  • перенапряжения, вызванные отключениями электрогенераторов и протяжённых высоковольтных линий электропередачи;
  • нарушение правильной фазировки роторов электрогенераторов, работающих параллельно, что приводит к качаниям и понижению напряжения у потребителей электроэнергии;
  • возникновение асинхронного режима в синхронном генераторе, что приводит к уменьшению напряжения у потребителей и вызывает риск потери устойчивости энергосистем с параллельно работающими электрогенераторами.

В зависимости от своего назначения системы защиты соответствуют:

  • требованиям для ситуаций связанных с повреждениями;
  • то же самое, но для ненормальных режимов.

В ситуациях с повреждениями релейная защита должна обладать

  • избирательностью, иначе – «селективностью», чтобы максимально точно выбирать электрические цепи, связанные с местом повреждения и выполнять оптимальные отключения;
  • быстродействием, поскольку большая электрическая мощность, расходуемая в месте повреждения, и тепло, связанное с ней, приводят к более разрушительным последствиям при увеличении времени отключения;
  • чувствительностью, чтобы фиксировать повреждение на необходимом удалении от места его возникновения;
  • надёжностью, чтобы срабатывание происходило только при возникновении повреждения в заданной области и не происходило по ошибке при его отсутствии.

При ненормальных режимах в целом требования такие же, как и для повреждений. Отличие заключается только в менее жёстких требованиях к быстродействию систем защиты.  В некоторых случаях отключение может быть сделано ручном режиме и от защиты необходимо получить лишь сигнал для этого.

Источник: http://podvi.ru/elektrotexnika/relejnaya-zashhita.html