Принцип работы моста уитстона

Измерительный мост

Принцип работы моста уитстона

Измерительный мост – электрическая схема, усовершенствованная английским физиком Чарльзом Уинстоном. Она источник постоянного тока и базовая мостовая схема, которую применяют в конструкциях многих измерительных приборов. Например, в устройствах контроля и измерения температур – термометрах.

Что такое измерительный мост?

Как пример, объясняющий электросхему моста, возьмём терморезистор или термометр. В таких системах механизм ставят в одной ветви схемы. Можно провести аналогию с аптечными весами. Разница только в том, что мост — электрическое устройство.

Рычажные весы и приборы с мостовой схемой действуют компенсационным способом. Величина тока в по Уинстону есть разница между сопротивлениями — чем она выше, тем обширнее протекает электрический ток. При изменении разности меняется и количество электрических зарядов.

Это свойство применяют в различных системах и приборах контроля. Точность замеров достигается за счет изменения сопротивления. Во время измерения электричества, проходящего через измерительный мост постоянного тока, обнаруживаются любые изменения физической величины сопротивления.

Принцип работы моста Уитстона

Мостовая схема Ч. Уинстона состоит из 2-х плеч. В каждом 2 резистора. Соединяет 2 параллельные ветви еще одна. Ее название – мостик. Ток проходит от клеммы с минусом к верхнему пику мостовой схемы.

Разделившись по 2 параллельным ветвям, ток идёт к положительной клемме. Величина сопротивления в каждой ветви непосредственно влияет на количество тока. Равное сопротивление на обеих ветвях говорит о том, что в них течет аналогичное количество тока. В таких условиях мостовой элемент уравновешен.

Если в ветвях неравное сопротивление, ток в электросхеме начинает движение от ветви с высоким уровнем сопротивления к ветви с наименьшим. Так продолжается, пока 2 верхних элемента цепей остаются равны по своей величине. Аналогичное положение резисторы имеют в схемах, которые используют в системах контроля и измерения.

Типы и модификации измерительных мостов

Основная схема измерительного моста – Уинстона. Одинарный мост меряет сопротивление от 1 Ом до 100 Мом. Но есть и модификации, позволяющие измерять разные типы сопротивлений — те, для которых базовая схема не годится.

Разновидности

  1. Небольшие сопротивления измеряются посредством прибора Кери Фотера. Можно узнать разницу между противодействиями больших значений.
  2. Еще один тип – делитель Кельвина-Варлея. Применяется в приборах лабораторного оборудования. Максимальная измеряющая способность, зафиксированная этим делителем напряжения, достигает 1,0*10-7.

  3. Мост Кельвина, который в некоторых странах называют именем Томсона, предназначен для замера неизвестных сопротивлений небольших величин (меньше 1 Ом). По принципу работы похож на одинарный мост Уинстона. Разница лишь в наличии дополнительного сопротивления, снижающего погрешности в измерении, которые появляются в результате падения напряжения в одном из плеч.
  4. Еще один тип – мост Максвелла.

    Измеряет низкодобротную индуктивность неизвестной величины.

Схемы измерительных мостов

Измерительные мосты переменного тока делят на 2 группы: двойные и одинарные. Одинарные имеют 4 плеча. В них 3 ветви создают цепь с 4 точками подключения.

В диагонали моста есть электромагнитный гальванометр, показывающий равновесие. В другой диагонали моста действует источник постоянного питания. Измерения могут происходить с погрешностями, которые зависят от их диапазона. По мере роста сопротивления чувствительность прибора уменьшается.

Двойной мост называют шестиплечим. Его плечи – измеряемое сопротивление (Rx), резистор (Ro) и 2 пары дополнительных резисторов (Rl, R2, R3, R4).

Двойные измерительные мосты

Небольшие сопротивления измеряются двойными мостами, состоящими из таких компонентов:

  • резисторы R (4);
  • гальванометр;
  • резистор образцовый;
  • источник питания;
  • амперметр;
  • резистор, устанавливающий рабочий ток.

Чтобы узнать условия, при которых возникает равновесие, для замкнутых контуров применяют уравнение Кирхгофа. Соблюдается условие: по гальванометру должен идти нулевой ток.

Где используют измерительный мост Уитстона?

Измерительные элементы применяют в работе с кабельными линиями из металла. Они позволяют нейтрализовать постороннее влияние для более эффективной локализации дефектов. Гарантированы высокоточные результаты в рамках диапазона измеряемых величин.

https://www.youtube.com/watch?v=bOFVBNCGXUo

С помощью мостовой схемы Уитстона можно вычислить сопротивление изменяющегося элемента. Схемы используют в конструкциях электронных весов, электронных термометров и терморезисторов.

Среди промышленных образцов широко известны приборы с ручной калибровкой равновесия:

  • ММВ – измеряет сопротивление проводника постоянного напряжения;
  • Р333 – схема одинарного моста, с помощью которой выявляется поврежденный участок кабеля.

Заключение

С помощью прибора Уинстона можно мерить индуктивность, содержание газа в воздухе или другом веществе, емкость и иные физические величины. Подробно о данных схемах можно прочитать в учебнике «Измерительные соединения». В книге представлены основные понятия, базовые методики, примеры, иллюстрирующие принцип действия.

Источник: https://www.equipnet.ru/articles/tech/tech_54359.html

лабораторная работа 31

Цель работы: 1. Изучение принципа работы измерительной мостовой схемы. 2. Определение величины сопротивления двух проводников и величины сопротивления при их последовательном и параллельном соединении. 3. Определение величины внутреннего сопротивления гальванометра.

Приборы и принадлежности: реохорд, набор резисторов с неизвестными сопротивлениями, магазин сопротивлений, милливольтметр, источник постоянного тока.

Теория R–моста Уитстона

Электрическим мостом в технике измерений называют электрический прибор для измерения сопротивлений, емкостей, индуктивностей и других электрических величин, представляющих собой измерительную мостовую цепь, действие которой основано на методике сравнения измеряемой величины с образцовой мерой. Как известно, метод сравнения дает весьма точные результаты измерений, вследствие чего мостовые схемы получили широкое распространение как в лабораторной, так и в производственной практике.

Классическая мостовая цепь состоит из четырех сопротивлений Z1, Z2, Z3, Z4, соединенных последовательно в виде четырехугольника (рис. 1), причем точки А, Е, В, D называют вершинами. Ветвь АВ, содержащая источник питания Un, называется диагональю питания, а ветвь ЕD, содержащая сопротивление нагрузки ZH, – диагональю нагрузки.. Сопротивления Z1, Z2, Z3, Z4, включенные между двумя соседними вершинами, называются плечами мостовой цепи.

Название «мостовая цепь» объясняется тем, что диагонали, как мостики, соединяют две противолежащие вершины (диагональ нагрузки, например, ранее так и называлась – мост). Схема, представленная на рис. 1, известна в литературе как четырехплечный мост, или мост Уитстона. В данной лабораторной работе мы познакомимся с работой одной из разновидностей моста Уитстона, а именно с той, которая позволяет проводить измерения величин активных сопротивлений.

Рис. 1

Условие равновесия моста Уитстона. R–мост Уитстона предназначен для измерения величин сопротивлений. Он состоит из реохорда АВ, чувствительного гальванометра       и двух резисторов – известной величины R и неизвестной – Rх.   (  рис. 2).

Рис. 2

 Реохорд представляет собой укрепленную на линейке однородную проволоку, вдоль которой может перемещаться скользящий контакт D. Рассмотрим схему без участка ЕD. Замкнем ключ К. Тогда по проволоке АВ потечет ток и вдоль нее будет наблюдаться равномерное падение потенциала от величины ja (в точке А) до величины jb (в точке В).

В цепи АЕВ пойдет ток и будет наблюдаться падение потенциала от ja до je (на резисторе Rх) и от je до jb (на резисторе R). Очевидно, в точке Е потенциал имеет промежуточное значение je между значениями ja и jb. Поэтому на участке АВ всегда можно найти точку D, потенциал которой равен потенциалу в точке Е: jD=je.

Если между точками Е и D включен гальванометр, то в этом случае ток через него не пойдет, т.к. φe – φD= 0.

Такое состояние моста  называется равновесием моста. Покажем, что условие равновесия определяется соотношением

.                                           (1)

Действительно, на основании второго закона Кирхгофа для любого замкнутого контура алгебраическая сумма падений потенциала равна алгебраической сумме электродвижущих сил e:

.                                (2)

Запишем эти условия для контуров АЕD и ЕВD в случае уравновешенного моста (рис. 2):

;                               (3)

.                                 (4)

Используем первый закон Кирхгофа: алгебраическая сумма сил токов в узле равна нулю: . Узлом называется точка или место соединения трех и более проводников (рис. 2). Для узла Е: IX – I+ IG = 0. При равновесии моста IG = 0, тогда получим , . Из (3) и (4) получим

,       .

Деля первое на второе, найдем соотношение (1). Так как сопротивление изотропного проводника цилиндрической формы зависит от геометрических размеров и материала, т.е. , где  – удельное сопротивление проводника; l, S – длина и площадь сечения проводника, то сопротивление участков реохорда АВ можно записать в виде

;     .                           (5)

Подставляя (5) в (1), получим искомую рабочую формулу

,                                          (6)

где  и  – длины плеч реохорда АВ; R – сопротивление, подбираемое магазином сопротивлений.

Мост Уитстона может быть также использован для определения внутреннего сопротивления гальванометра r, причем гальвано
метр           в этом случае включается, как показано на рис. 3.

Рис. 3

Если потенциалы je и jD равны, то сила тока в диагонали ЕD равна нулю, а поэтому замыкание и размыкание ключа К1 не будут вызывать изменения силы тока в ветвях мостовой схемы, в том числе и в ветви гальванометра.

При равенстве потенциалов je и j для моста имеет силу формула

,                                        (7)

по которой непосредственно определяется измеряемое сопротивление гальванометра. Таким образом, мостовая схема может быть использована для измерения сопротивлений не только в том случае, когда гальванометр включен в ее диагональ, но и тогда, когда он включен в одно из ее плеч. В этом случае надо при измерении добиваться постоянства показания гальванометра при замыкании и размыкании ключа в указанной диагонали схемы.

Такой прием применяется для измерения сопротивления гальванометра, т.к. он не требует включения второго прибора в диагональ схемы.

Ход работы

Упражнение 1. Измерение величины сопротивления двух проводников, а также общего сопротивления при их последовательном и параллельном соединениях.

1. Собрать схему, изображенную на рис. 2.

2. Измерить величину сопротивления Rх1, а также последующих сопротивлений (три раза). Для этого установить движок реохорда на середину () и подбором величины сопротивления магазина R уравновесить мост, то есть добиться нулевого положения стрелки при включенном питании.

Повторить измерения при  и , устанавливая движок реохорда вблизи его середины ( тем самым достигается минимальная погрешность результата). Измеряемая величина сопротивления определяется по формуле

.

3. Включить в цепь Rx2 вместо Rx1 и измерить его величину согласно п. 2.

4. Измерить величины сопротивлений последовательного и параллельного соединений Rx1 и Rx2, включаемых вместо Rx в плечо АЕ (рис. 2). Измерения проводить согласно требованиям
пункта 2.

5. По формулам

 и

рассчитать значения величин сопротивлений и сравнить их со значениями, полученными при выполнении пункта 4.

6. Результат измерений занести в таблицу 1.

7. Оценить погрешность измерения величин сопротивлений
Rx1, Rx2, Rx посл. и Rx пар.

Таблица 1

Измеряемое сопротивление № п/п l1,мм l2,мм R,Ом Rх,Ом Rх ср,Ом Расчетные значенияRx посл., Rx пар., Ом
Rх1 123
Rх2 123
Rх посл. 123
Rх пар. 123

Упражнение 2. Определение величины внутреннего сопротивления гальванометра.

1. Собрать схему, изображенную на рис. 3.

2. Измерить три раза величину . Мост уравновешивается как изменением величины сопротивления магазина R, так и изменением положения движка D реохорда АВ (рис. 3). Для достижения более высокой точности измерений нужно стремиться к тому, чтобы отношение l1/l2 (рис. 3) не сильно отличалось от единицы.

ВНИМАНИЕ! При включении гальванометра в плечо моста (рис. 3) последний находится в равновесии, если при замыкании и размыкании ключа К1 гальванометр не меняет своих показаний.

3. По формуле

рассчитать сопротивление гальванометра. Данные измерений занести в таблицу 2.

Таблица 2

R, Ом , мм , мм , Ом , Ом

Вопросы для допуска к работе

1.      Назовите цель работы.

2.      Каков принцип действия моста Уитстона?

3.      Изменится ли условие равновесия моста, если гальванометр и источник тока поменять местами?

5.      Оцените погрешность метода. При каком условии погрешность метода будет минимальной?

Вопросы для защиты работы

2.      Используя законы Кирхгофа, выведите условия равновесия моста Уитстона.

3.      Нарисуйте электрическую цепь последовательного и параллельного соединения проводников и рассчитайте их сопротивления.

4.      От каких величин зависит сопротивление изотропного проводника?

5.      Каково практическое использование моста Уитстона?

6.      Дайте определение электрического потенциала, ЭДС, напряжения.

7.      Сформулируйте закон Ома для однородного участка цепи.

Источник: http://phys-bsu.narod.ru/lib/el_m/el_m/31.htm

Принцип работы

Принцип измерения неизвестного сопротивления основан на уравнивании отношений сопротивлений в обоих плечах моста, при этом гальванометр, включённый между этими плечами, будет показывать нулевое напряжение. На рисунке Rx — это неизвестное сопротивление, которое требуется измерить. R1, R2 и R3 — резисторы с известными значениями сопротивлений, причём резистор R2 переменный.

Если отношение двух известных сопротивлений в плече R2/R1 равно отношению сопротивлений в плече Rx/R3, то в этом случае напряжение между точками схемы P2 и P4 будет равно нулю, и через гальванометр V ток не будет течь. Если же мост разбалансирован, то отклонение гальванометра будут указывать на то, что сопротивление резистора R2 слишком большое или слишком маленькое.

Переменный резистор R2 регулируют до тех пор, пока гальванометр не укажет на ноль.

https://www.youtube.com/watch?v=XamfUIu4wDI

По гальванометру можно определять отсутствие тока в цепи с очень большой точностью. Следовательно, если резисторы R1, R2 и R3 — высокоточные, то неизвестное сопротивление Rx может быть измерено с большой точностью. Небольшие изменения сопротивления Rx разбалансируют измерительный мост, что обнаруживается по показанию гальванометра.

При сбалансированном мосте выполняется равенство R2/R1 = Rx/R3.

Отсюда Rx = R3*R2 / R1

В случае если сопротивления R1, R2 и R3 известны, а резистор R2 — постоянный, то неизвестное сопротивление Rx может быть рассчитано с помощью законов Кирхгофа. Этот метод измерения часто используется при применении измерительного моста в тензометрии, совместно с тензодатчиком, так как считать показания с гальванометра получится гораздо быстрее, чем балансировать мост переменным резистором.

Расчёт

Используя первый закон Кирхгофа, найдём токи, протекающие в узлах P2 и P4:

I3 — Ix + IG = 0
I1 — I2 — IG = 0

Далее с помощью второго закона Кирхгофа найдём напряжения в контурах P1-P2-P4 и P2-P3-P4:

(I3 * R3) — (IG * RG) — (I1 * R1) = 0
(Ix * Rx) — (I2 * R2) + (IG * RG) = 0

Мост сбалансирован, следовательно IG = 0, так что вторая система уравнений сократится:

I3 * R3 = I1 * R1
Ix * Rx = I2 * R2

Решая эту систему уравнений, получим:

Rx = R2 * I2 * I3 * R3 / (R1 * I1 * Ix)

Из первого закона Кирхгофа следует, что I3 = Ix и I1 = I2. Следовательно величина неизвестного сопротивления Rx будет определятся по формуле:

Rx = R3*R2/R1

Если известны сопротивления всех четырёх резисторов и величина питающего напряжения Uпит, а сопротивление гальванометра достаточно высокое, так что током IG, протекающим через него можно пренебречь, то напряжение U между точками моста P2 и P4 может быть найдено путём расчёта каждого из делителей напряжения, вычтя затем напряжение на одном делителе из напряжения на другом делителе. В этом случае получится следующее уравнение:

U = Rx * Uпит / (R3 + Rx) — R2 * Uпит / (R1 + R2)

Напряжение питания Uпит можно вынести за скобки, в этом случае получится выражение:

U = (Rx / (R3 + Rx) — R2 / (R1 + R2)) * Uпит

Где U — напряжение в точке P2 относительно точки P4.

Измерительный мост Уинстона иллюстрирует концепцию дифференциальных измерений, результаты которых могут быть очень точными. Различные разновидности моста Уинстона используются для измерения ёмкости, индуктивности, импеданса и других величин.

Одной из разновидностей моста является мост Кельвина, специально предназначенный для измерения малых сопротивлений. Во многих случаях измерение величины неизвестного сопротивления связано с измерением некоторых физических параметров, таких как сила, температура, давление и т.д.

, здесь в качестве измеряемого сопротивления используется соответствующий резистивный датчик.

В 1865 году Джеймс Максвелл применил измерительный мост Уинстона, питаемый переменным током, для измерения индуктивности, и в 1926 году Алан Блюмлейн подверг этот мост усовершенствованию.

Модификации основной схемы измерительного моста

Мост Уинстона является основной схемой измерительных мостов, но так же существуют различные его модификации, с помощью которых можно проводить измерения различных типов сопротивлений, когда основная схема моста для этого не подходит. Вот несколько разновидностей основной схемы измерительного моста:

Источник: http://zpostbox.ru/izmeritelnyi_most.html

Оставьте комментарий