Почему пусковой ток больше номинального

Содержание

Пусковой ток. Типы и работа. Применение и особенности

Почему пусковой ток больше номинального

Пусковой ток – представляет ток, который необходим для запуска электрического или электротехнического устройства. Он больше номинального тока в разы, вследствие чего при подборе оборудования так важно учитывать данный параметр. В качестве примера можно привести ситуацию, когда при разгоне автомобилю нужно на порядок больше топлива, чем при движении на автомагистрали с одинаковой скоростью. Таким же образом электрический двигатель потребляет больше электрического тока при «разгоне».

Подобные явления могут наблюдаться и в ином электрическом оборудовании: электрических магнитах, лампах и так далее. Пусковые процессы в устройствах определяются параметрами рабочих органов: намагниченностью катушки, накаливающейся нитью и тому подобное. Весьма часто производители ограничивают ток пуска при помощи пускового сопротивления.

Типы

Пусковой ток появляется на небольшой период времени, что в большинстве случаев составляет доли секунд. Однако по своему значению он может быть в несколько раз выше номинального значения. Этот параметр также зависит от вида применяемого оборудования. В различных приборах указанные токи могут составлять в 2-9 раз больше номинального. Для примера можно привести следующее оборудование:

В большинстве случаев производители практически не указывают данный параметр в спецификациях. Поэтому часто приходится довольствоваться ориентировочными параметрами. Измерительные приборы бытового значения выделяются инерционностью, поэтому при помощи них затруднительно измерить кратковременный всплеск тока пуска. Лучше всего уточнить параметр тока пуска у прибора непосредственно у дилера.

Работа

При запуске любого вида электрического двигателя появляется пусковой ток, который может достигать 9 кратного значения от номинального тока. Характеристика тока пуска определяется типом двигателя, присутствием нагрузки на валу двигателя, схемы подключения, скорости вращения и тому подобное.

Ток пуска появляется вследствие того, что в период запуска требуется довольно сильное магнитное поле в обмотке, чтобы перевести ротор из статичного положения и раскрутить его. То есть это ток, который требуется, чтобы запустить электрический двигатель в рабочий режим. Именно поэтому его значение на порядок превышает рабочий ток.

В период включения мотора на обмотках наблюдается малое сопротивление, вследствие чего растет ток при постоянном напряжении. Как только двигатель начинает раскручиваться, то в обмотках появляется индуктивное сопротивление, вследствие чего ток начинает стремиться к номинальному значению.

Принцип действия

Электрические двигатели обширно применяются в разных сферах промышленности. В результате этого знание параметров пусковых характеристик важно для правильного применения электрических приводов. Основными параметрами, которые влияют на ток пуска, являются момент и скольжение на валу.

При подаче тока в обмотки наблюдается рост насыщения сердечника ротора магнитным полем, появлению эдс самоиндукции. В результате растет индукционное сопротивление в цепи. При раскручивании ротора уменьшается степень скольжения. В результате ток пуска с ростом сопротивления уменьшается до рабочего параметра.

Ток пуска важен не только для электродвигателей, но и для источников питания. В частности, это касается аккумуляторных батарей. Параметры тока пуска характеризуют мощность в наивысшем значении, которую аккумулятор может выдавать в течение некоторого времени без значительной просадки напряжения.

Ток пуска в большинстве случаев определяется емкостью батареи, в том числе условий климата. Так как при запуске движка летом требуется меньше энергии, чем зимой, то ток пуска при первом варианте будет несколько раз ниже, чем во втором.

К примеру, для запуска современной машины аккумулятору в соответствии со стандартами необходимо выдавать ток на уровне 250-300 А минимум в течении 30 секунд.

Применение

Для правильной эксплуатации электрических приводов важно учитывать их пусковые характеристики. Если этого не учитывать и не пытаться нивелировать минусы тока пуска, то возможны неприятные последствия. Так ток пуска может негативно сказываться на другом оборудовании, которое одновременно работает с указанным электродвигателем на одной линии. При больших значениях ток пуска может приводить к падению напряжения сети и даже вызывать поломку оборудования.

Для снижения негативного воздействия подобных процессов, могут применяться специальные приспособления или методы, позволяющие снизить ток пуска:

  • Электродвигатель запускается в холостом режиме. Только потом к нему прикладывают нагрузку, чтобы вывести на рабочий режим. К примеру, этот метод можно использовать для насосов и вентиляционного оборудования, в которых можно выполнять регулирование нагрузки на двигатель.
  • Подключение двигателя по схеме звезда – треугольник.
  • Использование автотрансформаторного запуска. В результате напряжение подается плавно через автотрансформатор.
  • Использование пусковых резисторов либо реакторов, которые позволяют ограничить пусковой ток. Здесь ток, который превышает установленное значение, тратится на выделение тепла на гасящих резисторах.
  • Использование частотных регуляторов позволяет уменьшить ток пуска двигателя. Но такой метод подходит лишь для двигателей мощностью не более 10–30 КВт. Оборудование большей мощности потребует частотных регуляторов, которые стоят очень дорого.
  • Устройства плавного пуска, выполненные на тиристорах. Снижение влияния тока пуска обеспечивается фазовым управлением.

Пусковой ток аккумулятора

  • Если Вы знаете пусковой токсвоего старого аккумулятора, и хотите поменять его на новое устройство, то важно, чтобы его величина не была ниже. Также не нужно покупать аккумулятор с меньшим параметром электрической емкости.
  • При приобретении аккумулятора необходимо учесть, что параметры тока пуска могут указываться в разных стандартах. Немцы используют DIN, американцы SAE, а европейцы EN. Чтобы не ошибиться, стоит попросить у продавца специальный лист соответствия, который позволит определить ток пуска батареи.
  • Если Вы часто эксплуатируете автомобиль в зимний период, то выбирайте аккумулятор с большим значением тока пуска при прочих равных параметрах. Благодаря этому в морозы Вы сможете без проблем запустить свой автомобиль.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/puskovoi-tok/

Пусковой ток электродвигателя: определение понятия, особенности расчета показателя

На электродвигателях есть табличка, в которой указаны основные технические характеристики агрегата: мощность, частота вращения и т. д. Однако производители не говорят о таком параметре, как пусковой ток. Это важная характеристика, которая оказывает существенное влияние на работу силового агрегата. Хороший электрик должен уметь определять этот показатель, и знать, что делать с полученными значениями.

  • Определение понятия
  • Особенности расчета
  • Практическое применение

Пусковой ток двигателя – электроток, потребляемый силовым агрегатом в момент старта. Его показатель в несколько раз превышает значение номинального тока и при выборе оборудования крайне важно учитывать этот параметр. Здесь уместно сравнение с автомобилем, при разгоне которого тратится значительно больше топлива в сравнении с движением при постоянной скорости. Это явление характерно для различного электрооборудования:

  • Погружные насосы – отличаются самым тяжелым стартом, и их пусковой электроток может превышать номинальный в 9 раз.
  • Холодильники – при запуске сила тока превышает номинальный в 3,33 раза.
  • Микроволновые печи – показатель пускового электротока в 2 раза выше номинального значения.

Это связано с тем, что в момент включения электродвигателя в его обмотке создается сильное магнитное поле, необходимое для раскручивания ротора. Именно поэтому показатель электротока пуска значительно превышает номинальное значение. На его значение оказывают влияние различные факторы:

  • Наличие нагрузки на валу силового агрегата.
  • Скорость вращения.
  • Схема подключения и т. д.

Особенности расчета

Определение значения пускового тока электродвигателя проводится в два этапа. Сначала необходимо рассчитать номинальный электроток, для этого используется следующая формула:

Затем можно переходить к определению показателя тока пуска, используя формулу:

Зная это значение, можно легко подобрать выключатели-автоматы, обеспечивая тем самым надежную защиту линии включения. В паспорте электродвигателей указано значение силы тока при номинальной нагрузке на валу силового агрегата. Например, если на моторе присутствует надпись 13,8/8 А, то при его включении в сеть на 220 В и номинальной нагрузке, сила тока будет составлять13,8 А. Когда он подсоединен к сети 380 В, то ток составит 8 А.

Если известна номинальная мощность силового агрегата, можно легко выяснить и его номинальный ток. Для этого предстоит воспользоваться формулой:

Иногда коэффициент мощности мотора может оказаться неизвестным. В такой ситуации стоит воспользоваться простым соотношением – 2 А/1 кВт.

Например, если показатель номинальной мощности мотора составляет 15 кВт, то он будет потреблять около 30 А. Погрешность при таком расчете минимальна.

Практическое применение

Силовые приводы будут эксплуатироваться правильно только в том случае, если при их выборе были учтены пусковые характеристики.

Высокий стартовый ток представляет серьезную опасность для электрооборудования. Если не принимать мер по его ограничению, возможны серьезные проблемы.

Ток пуска может повредить не только сам мотор, но и другое электрооборудование, установленное с ним на одной линии. Для решения поставленной задачи можно использовать следующие методы:

  • Производить запуск силового агрегата на холостом ходу – нагрузка прикладывается только после перехода мотора в рабочий режим.
  • При подключении использовать схему треугольник-звезда.
  • Применять автотрансформаторный пуск – напряжение на двигатель подается через автотрансформатор, что позволяет добиться плавного повышения силы тока.
  • Использовать пусковые резисторы.
  • Применение частотных регуляторов и тиристорных устройств плавного запуска.

С помощью устройств плавного пуска, основанных на тиристорах, можно снизить показатель электротока пуска в два раза. При этом они могут работать как с асинхронными, так и синхронными электромоторами.

В случае с трехфазными асинхронными двигателями, широкое распространение получили преобразователи частоты. Они позволяют изменять частоту электротока, обеспечивая не только плавный старт мотора, но и частоту вращения его ротора. Это эффективные устройства, но с высокой стоимостью.

Читайте также  Почему гудит индукционная варочная панель?

Следует помнить, что частотные преобразователи создают в сети помехи, устранить которые поможет сетевой фильтр.

Также можно использовать схему пуска силового агрегата с переключением обмоток со звезды на треугольник.

Для решения поставленной задачи часто применяются реле времени. Однако следует помнить, что этот способ подходит не для всех электромоторов.

Например, этот метод не применяется при подключении асинхронных электромоторов, рассчитанных на напряжение 220-380 В.

Сейчас на рынке появились более современные устройства – софт-стартеры. Они основаны на микропроцессорах и весьма эффективны. Единственным недостатком этих устройств может считаться лишь высокая стоимость.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/tok/chto-takoe-puskovoy-tok-elektrodvigatelya.html

Пусковой ток аккумулятора. Какой должен быть и что если он большой?

Аккумуляторная батарея автомобиля, очень важный элемент, не смотря на простоту конструкции она таит в себе несколько непонятных аббревиатур, таких как – емкость, полярность и конечно же пусковой ток.

Про некоторые я уже писал, про некоторые еще напишу, но сегодня будем говорить про «пусковые показатели» батареи – почему это так важно и какие они должны быть.

Не все знают про этот параметр и зачастую при выборе нового АКБ, изначально делают большую ошибку! А она приводит к тому, что батарея быстро выходит из строя, и не может запустить ваш авто зимой …

Для начала определение

Пусковой ток АКБ (иногда носит название стартерный) – это максимальное значение силы тока, нужной для запуска двигателя, а именно для питания стартера, чтобы он смог провернуть маховик с присоединенными к нему поршнями. Процесс этот сложный, потому как поршни сдавливают топливо (в 9 – 13 атмосфер), которое поступает в камеры. Зимний пуск еще более осложнен, потому как масло густеет и стартеру нужно преодолеть не только сжатие, но и отсутствие нормальной смазки цилиндров.

Какая основная задача аккумулятора автомобиля? Конечно же, накопление и последующий пуск двигателя, вроде как строение многих моделей одинаково, но не одинаковы характеристики. Нет конечно же нормальное напряжение у заряженной модели будет примерно 12,7В, но вот сила тока и емкость, будет отличаться.

Пару слов о строении и свойствах

АКБ были созданы именно для того чтобы перезаряжаться и запускать машину, то есть они очень практичны с точки зрения эксплуатации. Обычная батарея очень быстро разряжалась, и менять ее было накладно, тогда то и были придуманы аккумуляторы.

Методом проб и ошибок, батареи эволюционировали – так через несколько лет после изобретения, вырисовалась вполне конкретная модель, было это примерно 100 лет назад, которая до сих пор не менялась.

Обычно это шесть отсеков с пластинами из свинца (минусовые) и его оксида (плюсовые), которые залиты специальным электролитом из серной кислоты. Именно это сочетание и заставляет работать аккумулятор, если исключить одну составляющую, то работа будет нарушена.

Один разрозненный аккумулятор, генерирует в среднем 2,1В, этого крайне мало для запуска двигателя,  в среднестатистической батарее, их объединяют подключая последовательно, обычно это 6 банок по 2,1В = 12,6 – 12,7В.

Это напряжение достаточно, чтобы возбудить обмотку стартера.

Пару слов о емкости

Однако напряжение это только одна из составляющих, она унифицирована, то есть оно одинаково у всех аккумуляторов не зависимо от емкости.

Но вот емкость может отличаться в разы. Измеряется в Амперах в час, или попросту Aч. Если вывести небольшое определение — то это способность аккумулятора отдавать определенную силу тока целый час. Автомобильные варианты начинаются от 40 Aч, и доходят до 150 Aч.

Однако самые распространенные на рядовых иномарках – 55 – 60 Aч. То есть – батарея может отдавать 60 Ампер целый час, а затем конкретно разрядится.

Если честно то это большое значение, если перемножить 12,7 (напряжение) и 60 Aч (емкость), то получится 762 Ватта в час! Можно пару тройку раз разогреть электрический чайник.

С емкостью тоже разобрались, теперь непосредственно о пусковом токе.

Так что это – пусковой ток?

Как я уже писал сверху пусковой ток – это максимальная сила тока которую может отдавать батарея в очень короткий промежуток времени. Простыми словами чтобы запустить двигатель среднестатистической машины нужно примерно 255 – 270 Ампер, очень много! По сути это и есть «пусковые значения», от слова «запустить» применительно к силовому агрегату.

Если емкость аккумулятора примерно 60 Aч, то это превышает его номинал примерно в 4 – 5 раз. Правда, такое напряжение должно отдаваться всего около 30 секунд, не больше.

Зачастую в южных районах нашей страны, где температура воздуха всегда остается в плюсовой зоне, этот параметр даже и не рассматривают! Ибо не зачем, берем средний аккумулятор, и он прекрасно будет справляться со своими обязанностями.

Ведь на улице тепло и масло жидкое. Но вот в северных районах этот показатель является одним из самых важных, там температуры зачастую в крайне отрицательной зоне и запустить силовой агрегат сложно, масло похоже, скорее на кисель, чем на текучую жидкость.

Запуск будет крайне осложнен.

Если для запуска двигателя при «+ 1 + 5» градусов, достаточно будет (одномоментно) 200 – 220 Ампер, то чтобы запустить уже при – 10 – 15 градусах, нужно потратить энергии на 30% больше, а это 260 – 270 Ампер. Теперь подумайте, сколько энергии тратится при – 20 – 30 градусах Цельсия.

Таким образом, чем ниже температура зимой, тем важнее этот параметр, это своего рода аксиома.

От чего зависит пусковой ток?

Если посмотреть различных производителей, например страны Европы, США, Россия или Китай, то у всех этих батарей будет различный показатель пускового тока. Так, например если сравнить 55 Aч Китай и Европа, разница может быть на 30 – 40%! Но почему так?

Все дело в технологиях:

  • Применение очищенного свинца, даже в простых кислотных АКБ приведет к быстрой зарядке и последующей разрядке, соответственно пусковые значения увеличиться.
  • Большее количество пластин в таком же по габаритам корпусе.
  • Большее количество электролита.
  • Плюсовые пластины более пористые, что позволит больше накапливать заряда.
  • Герметичные конструкции, не дают испаряться электролиту, что позволит батареи всегда держать нужный уровень, не оголяя пластины.

Конечно, можно добавить и качество сборки и порядочность производителя, все это дает большие результаты, нежели у конкурентов. Правда и стоят такие АКБ дороже.

Но на данный момент, есть и новые технологии — рекордсменами по отдачи пускового тока являются GEL и AGM аккумуляторы, у них ток отдачи может доходить до 1000 Ампер в 30 секунд, примерно в 3 – 4 раза больше, чем у обычных кислотных вариантов. Хотя у этих технологий также есть свои минусы и в первую очередь это цена.

Также стоит отметить, что при пуске двигателя напряжение батареи падает примерно до 9 Вольт, но сила тока многократно возрастает – это нормальный процесс. После пуска мотора, напряжение займет опять свои нормальные показатели в 12,7Вольта, а потраченный заряд восполнит генератор автомобиля. Если показатели напряжения при пуске падают до 6 Вольт (и очень долго восстанавливаются), то это может быть критично, стартеру просто не хватит энергии для запуска. Скорее всего, что АКБ выходит из строя.

Как происходят замеры?

После производства батареи, ее нужно испытать, чтобы определить стартерные показали. Испытания на производствах сложные, зачастую батареи помещают в отрицательные температуры, охлаждают их несколько часов, затем пробуют запустить двигатель.

Обычно испытания проходит при – 18 градусах Цельсия и пуск продолжается 30 секунд, если батарея справилась, то можно запускать в производство. Если нет, меняют конструкцию, наполнение, и по новой проводят испытания.

Замеряют несколько раз, то есть существует ряд интервалов с максимальными значениями, в такие интервалы замеряют максимальные токи, которые способен выдать именно этот экземпляр, они записываются и позже наносятся на «борта» АКБ. Нужно отметить, что в партии так жестко проверяют далеко не все аккумуляторы. Однако «дефектовка» присутствует, происходят проверки нагрузочной вилкой.

Справедливости ради, стоит отметить, что раньше во времена СССР, аккумуляторы вообще не заливались электролитом на производстве (было понятие сухого заряда), их вы сами должны были залить и зарядить! То есть покупаем электролит нужной плотности, и затем в течении 12 – 24 часов заряжаем.

Какой пусковой ток среднего АКБ и что делать, если купить большим значением?

НА данный момент существует разделение пусковых значений, на бензиновые и дизельные агрегаты. Ведь дизелю изначально нужен больший показатель, потому как степень сжатия у него намного выше, может доходить до 20 атмосфер.

ИТАК, средние показатели:

Для бензиновых вариантов это – 255 Ампер

Для дизельных вариантов – не менее 300 Ампер

Эти цифры, что говорится в притык, замерены при минус 18 градусах Цельсия, чего может не хватить при пуске в более сильные морозы.

Но сейчас с развитием технологий, зачастую в магазинах мы можем видеть показатели стартерного тока в 400, 500 и даже 600 Ампер! Что будет если взять с такими цифрами? Не спалю ли я свой стартер?

Ответ прост – конечно же, нет. Не спалите! Берите и забудете что такое холодный пуск, с такими характеристиками вам будет нипочем любой мороз.

Что же касательно стартера – при большем токе, он будет быстрее и сильнее вращаться, что позволит сделать ему больше оборотов, а в свою очередь это способствует быстрому и качественному пуску двигателя.

Конечно, нужно читать характеристики вашего авто, но думаю пускового значения в 450 — 500 АМПЕР, будет достаточно для всех регионов России. Опять же оговорюсь, я сейчас рассматриваю обычные автомобили не грузовые с большими и объемными движками, им зачастую и 600 будет мало.

Классификация в мире

Как я уже немного затрагивал, в мире сейчас есть несколько основных классификаций величин пускового тока. Которые имеют собственные методики определения и маркировки. Для начала как маркируются:

  • Немецкие производители здесь выделяются – они наносят маркировку «DIN»
  • В Америке наносят — «SAE»
  • В странах Евросоюза (не Германия) наносят – «EN»
  • В России зачастую пишут – «пусковой или стартерный ток»
Читайте также  Почему гудит люминесцентная лампа?

В любом случае, если вы не нашли показателей на бортах или крышки АКБ, то вам нужно спросить продавца об этих значениях, иногда они указываются в книжках которые идут с батареей. Теперь пару сов про методику определения:

  • В странах Европы охлаждают АКБ до – 18 градусов и разряжают в течение 10 секунд до 7,5Вольт.
  • Немцы также охлаждают до – 18 градусов и разряжают до 9 Вольт в течение 30 секунд.
  • Российская методика схожа с немецкой, у нас по ГОСТУ такие е же значения разряда при них фиксируются основные показатели.
  • В США при – 18 градусах, разряжают до 7,2 Вольта, в течение 30 секунд.

Немного поясню — когда просаживается напряжение, потребление ампер растет, именно это и фиксируется (по сути, имитация пуска).  Охлаждение имитирует сложные погодные условия.

Сейчас видео версия статьи, для тех кто не понял, смотрим.

На этом заканчиваю, к стати очень полезная статья — как выбрать аккумулятор, всем советую. Читайте наш АВТОБЛОГ.

Источник: http://avto-blogger.ru/akb-avto/puskovoj-tok-akkumulyatora.html

Как рассчитать пусковой ток

28.03.2018

Величина пускового тока, необходимого для приведения двигателя в действие, существенно (иногда в 8-10 раз) превышает показатели тока, который подается для работы в нормальном режиме. Результатом резкого роста потребления энергии становится падение напряжения в питающих электросетях, что может повлечь за собой:

  • проблемы с другими подключенными к сети приборами;
  • более скорый износ узлов самого двигателя (этому способствует рывок при запуске).

Свести отрицательное воздействие к минимуму возможно, используя дополнительные устройства. Параметры вспомогательного оборудования определяют, исходя из значения пускового тока для данной модели двигателя.

Разобраться, как посчитать пусковой ток электродвигателя, можно самостоятельно, ознакомившись с технической документацией к агрегату и формулами для расчета. Сначала вам потребуется определить величину номинального тока (IH, зависит от типа двигателя). Для этого предусмотрены следующие формулы (все необходимые данные есть в техпаспорте к оборудованию):

  • 1000PH/(ηHUH) для двигателей постоянного тока;
  • 1000PH/(UHcosφH√ηH) для устройств переменного тока.

Далее проводится собственно расчет значения пускового тока (IП) по формуле Кп (кратность постоянного тока к номинальному показателю, указана в техдокументации)*IH.

Способы уменьшения пускового тока

Проблема снижения пускового тока и более плавной подачи напряжения решается с помощью специального оборудования:

  • софтстартеров и устройств плавного пуска;
  • автоматических выключателей соответствующего типа отключения (B, D или C).

Грамотный подход к расчету значения пускового тока для электрического двигателя позволит вам получить точные результаты и подобрать наиболее эффективные средства защиты линии включения.

Источник:

Пусковые токи асинхронных электродвигателей | Полезные статьи — Кабель.РФ

Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.

Рисунок 1.

Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.

Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения).

Поэтому при подключении и наладке двигателей переменного тока (наиболее распространенных в промышленности) всегда стоит задача минимизировать значения пусковых токов, а также повысить плавность пуска двигателя за счет применения специального дополнительного оборудования.

Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).

Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи.

Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты.

Также пусковой ток асинхронного электродвигателя можно уменьшить за счет внедрения внешнего сопротивления в обмотку ротора.

Расчет пускового тока асинхронного электродвигателя

Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).

Расчет пускового тока электродвигателя осуществляется в несколько этапов:

Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.

https://www.youtube.com/watch?v=rvDzoAhjJtE

Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.

Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.

Источник:

Расчет возможности пуска электродвигателя 380 В

Раздел: Электрооборудование

В данной статье будет рассматриваться изменение напряжения (потеря напряжения) при пуске асинхронного двигателя с короткозамкнутым ротором (далее двигатель) и его влияние на изменения напряжения на зажимах других электроприемников.

При включении двигателя пусковой ток может превышать номинальный в 5-7 раз, из-за чего включение крупных двигателей существенно влияет на работу присоединенных к сети приемников.

Это объясняется тем, что пусковой ток вызывает значительное увеличение потерь напряжения в сети, вследствие чего напряжение на зажимах приемников дополнительно снижается. Это отчетливо видно по лампам накаливания, когда резко снижается световой поток (мигание света). Работающие двигатели в это время замедляют ход и при некоторых условиях могут вообще остановиться.

Кроме того, может случиться, что сам пускаемый двигатель из-за сильной просадки напряжения не сможет развернуть присоединенный к нему механизм.

Режим пуска двигателя рассматривается при максимальной нагрузке линии, так как именно при таких условиях создаются наиболее неблагоприятные условия для работы присоединенных к сети приемников.

Чтобы проверить можно ли включать двигатель, нужно рассчитать напряжение на его зажимах во время пуска и напряжение на любом другом работающем двигателе, а также проверить напряжение у ламп.

Пример возможности пуска электродвигателя 380 В

Требуется проверить возможность пуска электродвигателя типа 4А250М2 У3 мощностью 90 кВт. От шин 6 кВ подстанции 2РП-1 питается подстанция с трансформаторами типа ТМ мощностью 320 кВА.

От подстанции 2РП-1 до трансформаторов ТМ-6/0,4 кВ с установленным ответвлением 0%, проложен кабель марки ААБ сечением 3х70 мм2, длина линии составляет 850 м.

К шинам РУ-0,4 кВ присоединен кабелем марки ААБ сечением 3х95 мм2, длиной 80 м двигатель типа 4А250М2 У3.

Рис. 1 — Однолинейная схема 0,4 кВ

В момент пуска двигателя 4А250М2 У3 работает подключенный к шинам двигатель 4А250S2 У3 мощностью 75 кВт с напряжением на зажимах 365 В. Напряжение на шинах 0,4 кВ при пуске двигателя равно Uш = 380 В.

где:

  • • Ммакс/Мн – кратность максимального момента;
  • • Мп/Мн – кратность пускового момента;
  • • Мн – номинальный момент двигателя;

Расчет:

1. Определяем длительно допустимый ток двигателя Д1:

2. Определяем пусковой ток двигателя Д1:

где: • Kпуск = 7,5 – кратность пускового тока, согласно паспорта на двигатель;

3. Определяем величину активного и индуктивного сопротивления для алюминиевого кабеля марки ААБ сечением 3х70 мм2 на напряжение 6 кВ от шин подстанции 2РП-1 до трансформатора типа ТМ 320 кВА, значения сопротивлений берем из таблицы 2.5 [Л2.с 48].

Получаем значения сопротивлений Rв = 0,447 Ом/км и Хв = 0,08 Ом/км.

Эти сопротивления необходимо привести к стороне низшего напряжения трансформатора, так как двигатель подключен к сети низшего напряжения. Из таблицы 8 [Л1, с 93] для номинального коэффициента трансформации 6/0,4 кВ и ответвления 0% находим значение n=15.

4. Определяем активное и индуктивное сопротивление кабеля по отношению к сети низшего напряжения по формуле [Л1, с 13]:

где: • Rв и Хв – сопротивления сети со стороны высшего напряжения; • n = 6/0,4 =15 – коэффициент трансформации понижающего трансформатора.

5. Определяем сопротивление кабеля длиной 850 м от подстанции 2РП-1 до трансформатора 6/0,4 кВ:

Rс = Rн*L = 0,002*0,85 = 0,0017 Ом;

Хс = Хн*L = 0,000355*0,85 = 0,0003 Ом;

6. Определяем сопротивление трансформатора мощностью 320 кВА, 6/0,4 кВ по таблице 7 [Л1, с 92,93].

Rт = 9,7*10-3 = 0,0097 Ом;

Хт = 25,8*10-3 = 0,0258 Ом;

7. Определяем сопротивления линии от шин подстанции 2РП-1 до шин низшего напряжения подстанции:

Rш = Rс + Rт = 0,0017 + 0,0097 = 0,0114 Ом;

Хш = Хс + Хт = 0,0003 + 0,0258 = 0,0261 Ом;

8. Определяем сопротивление кабеля длиной 80 м марки ААБ 3х95 мм2 от шин низшего напряжения до зажимов двигателя:

R1 = R0*L = 0,329*0,08 = 0,026 Ом;

Х1 = Х0*L = 0,06*0,08 = 0,0048 Ом;

где:
• R0 = 0,329 Ом/км и Х0 = 0,06 Ом/км -значения активных и реактивных сопротивлений кабеля определяем по таблице 2-5 [Л2.с 48].

9. Определяем суммарное сопротивление линии от подстанции 2РП-1 до зажимов двигателя:

Rд = Rш + R1 = 0,0114 + 0,026 = 0,0374 Ом;

Хд = Хш + Х1 = 0,0261 + 0,0048 = 0,0309 Ом;

Если выполняется отношение Rд/ Хд = 0,0374/0,0309 = 1,21 < 2,5. Таким образом, относительная величина ошибки при определении потери напряжения в сети от пускового тока двигателя не превышает 5%.

10. Определяем коэффициент Ад по формуле [Л1, с 14]:

где: • cosφ = 0,3 и sinφ = 0,95 средние значения коэффициентов мощности при пуске двигателя, принимаются при отсутствии технических данных, согласно [Л1. с. 16].

11. Определяем напряжение на зажимах двигателя Д1 по формуле [Л1, с 14]:

где: • U*ш = Uш/Uн = 380/380 =1 – относительное напряжение на шинах распределительного пункта, во многих случаях его можно принять равным 1; • Iп – пусковой ток двигателя;

12. Проверяем сможет ли двигатель Д1 развернуть присоединяемый механизм нанос центробежный 1Д315-71а:

где:• mп=Мпуск/Мном = 1,2 – кратность пускового момента электродвигателя при номинальном напряжении на его клеммах (выбирается по каталогу на двигатель);

• mп.

мех — требуемая кратность пускового момента приводимого механизма, выбирается по таблице 4 [Л1, с 88], для центробежного насоса равно 0,3;

12.

1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д315-71а Рн.мех. = 80 кВт, к номинальной мощности двигателя 90 кВт:

Читайте также  Почему гудит новый холодильник

Источник: https://novpedkolledg2.ru/bez-rubriki/kak-rasschitat-puskovoj-tok.html

Пусковой ток

  1. Пусковые токи электродвигателей
  2. Пусковой ток аккумуляторной батареи

При работе с различными электротехническими устройствами довольно часто возникает вопрос, что такое пусковой ток. В самом простом варианте ответа это будет такой ток, который потребен при запуске электродвигателя или другого устройства.

Его значение может в несколько раз превышать номинальное, требующееся в нормальном устойчивом режиме работы. Таким образом, для того чтобы раскрутить ротор, электродвигатель должен приложить гораздо больше энергии по сравнению с работой при постоянном числе оборотов.

Снизить пусковые токи можно с помощью специальных систем гашения и устройств плавного пуска.

Пусковые токи электродвигателей

В каждом приборе, устройстве или механизме возникают процессы, называемые пусковыми. Это особенно заметно при начале движения, когда необходимо тронуться с места. В этот момент для первоначального толчка требуется значительно больше усилий, чем при дальнейшей работе данного механизма.

Точно такие же явления затрагивают и электрические устройства – электродвигатели, электромагниты, лампы и другие. Наличие пусковых процессов в каждом из них зависят от того, в каком состоянии находятся рабочие элементы. Например, нить накаливания обычной лампочки в холодном состоянии обладает сопротивлением, значительно меньшим, чем при нагревании в рабочем режиме до 10000С.

То есть, у лампы, мощностью 100 Вт сопротивление нити во время работы составит около 490 Ом, а в выключенном состоянии этот показатель снижается до 50 Ом. Поэтому при высоком пусковом токе лампочки иногда перегорают. От всеобщего перегорания их спасает сопротивление, возрастающее при нагревании.

Постепенно оно достигает постоянного значения и способствует ограничению рабочего тока до нужной величины.

Влияние пусковых токов в полной мере затрагивает все виды электродвигателей, широко применяющихся во многих областях. Для того чтобы правильно эксплуатировать электроприводы нужно знать их пусковые характеристики. Существует два основных параметра, оказывающих влияние на пусковой ток.

Скольжение является связующим звеном между частотой вращения ротора и скоростью вращения электромагнитного поля. Снижение скольжения происходит от 1 до минимума по мере набора скорости. Пусковой момент является вторым параметром, определяющим степень механической нагрузки на валу.

Эта нагрузка имеет максимальное значение в момент пуска и становится номинальной после того, как произошел полный разгон механизма.

Следует учитывать особенности асинхронных электродвигателей, которые при пуске становятся эквивалентны трансформатору с короткозамкнутой вторичной обмоткой. Она обладает совсем небольшим сопротивлением, поэтому величина пускового тока при скачке может достичь многократного превышения по сравнению с номиналом.

В процессе дальнейшей подачи тока в обмотки, сердечник ротора начинает по нарастающей насыщаться магнитным полем. Возникает ЭДС самоиндукции, под действием которой начинает расти индуктивное сопротивление цепи. С началом вращения ротора происходит снижение коэффициента скольжения, то есть наступает фаза разгона двигателя.

При росте сопротивления пусковой ток снижается до нормативных показателей.

В процессе эксплуатации может возникнуть проблема, связанная с увеличенными пусковыми токами. Причиной их возникновения, чаще всего, становится перегрев электродвигателей, перегруженные электрические сети в момент пуска, а также ударные механические нагрузки в подключенных устройствах и механизмах, таких как редукторы и другие.

Для решения этой проблемы предусмотрены специальные приборы, представленные частотными преобразователями и устройствами плавного пуска. Они выбираются с учетом особенностей эксплуатации того или иного электродвигателя. Например, устройства плавного пуска используются в основном для агрегатов, соединенных с вентиляторами. С их помощью достигается ограничение пускового тока до двух номиналов.

Это вполне нормальный показатель, поскольку во время обычного пуска ток превышает номинальное значение в 5-10 раз. Ограничение достигается за счет измененного напряжения в обмотках.

Обычные двигатели переменного тока получили широкое распространение в промышленном производстве, благодаря очень простой конструкции и низкой стоимости. Их серьезным недостатком считается тяжелый запуск, который существенно облегчается частотными преобразователями.

Наиболее ценным качеством этих устройств является способность к поддержке пускового тока в течение одной минуты и более. Самые современные приборы позволяют не только регулировать пуск, но и оптимизировать его по заранее установленным эксплуатационным характеристикам.

Пусковой ток аккумуляторной батареи

Аккумулятор не зря считается одним из важных элементов автомобиля. Его основная функция заключается в подаче напряжения на имеющееся электрооборудование. В основном это стартер, автомагнитола, освещение и другие устройства. Для того чтобы успешно решать эту задачу, в аккумуляторе должно происходить не только накопление, но и сохранение заряда в течение длительного времени.

Одним из основных параметров батареи является пусковой ток. Данная величина соответствует параметрам тока, который протекает в стартере в момент его пуска. Пусковой ток непосредственно связан с режимом работы автомобиля.

Если транспортное средство эксплуатируется очень часто, особенно в холодных условиях, в этом случае батарея должна иметь большой пусковой ток. Его номинальный параметр обычно находится в соответствии с мощностью источника питания, выдаваемой в течение 30 секунд при температуре минус 180С.

Он появляется в тот момент, когда ключ поворачивается в замке зажигания и начинает работать стартер. Измерение токового значения производится в амперах.

Пусковые токи могут быть совершенно разными у аккумуляторов, одинаковых по своему внешнему виду и основным характеристикам. На этот фактор существенное влияние оказывают физические свойства материалов для изготовления и конструктивные особенности каждого изделия.

Например, возрастание тока может наблюдаться, если свинцовые пластины становятся пористыми, повышается их количество, используется ортофосфорная кислота.

Завышенная величина тока не оказывает негативного влияния на оборудование, она лишь способствует повышению надежности пуска.

Источник: https://electric-220.ru/news/puskovoj_tok/2016-12-07-1136

Пусковые токи

Вы хотите, чтобы стабилизатор напряжения, источник бесперебойного питания или генератор служили безотказно? Тогда эта статья будет для вас полезна.

Одна из основных характеристик бытовых приборов — электрическая мощность на выходе. Она отражает возможность питания подключённой нагрузки. Для правильного выбора стабилизатора напряжения переменного тока, ИБП или генератора нужно знать мощность устройства. Для ее расчета следует подсчитать сумму электрической мощности всех приборов, которые могут быть единовременно подключены.

Одно из основных условий долгой и стабильной работы стабилизатора, генератора и ИБП: мощность техники не должна превышать их возможности по выходной мощности. Лучше, чтобы суммарная электрическая мощность электроприборов, которые функционируют одновременно, была на 20 % меньше выходной мощности питающего прибора. Чем меньше стабилизатор или ИБП работает с перегрузкой, тем дольше он служит.

В расчете суммарной мощности и состоит основная трудность. В паспорте любого устройства указана мощность в кВт. Вроде бы всё просто: нужно сложить мощность приборов. Но в этом кроется основная ошибка. Приборы, в конструкции которых есть электродвигатели, насосы или компрессоры, в момент запуска дают нагрузку на сеть, превышающую номинал в 2–7 раз. Такое явление обусловлено наличием пусковых токов.

Это же правило относится к приборам, в состав которых входят инерционные компоненты или элементы, физические свойства которых в момент запуска отличаются от их обычных значений при эксплуатации. Классический пример — изменение сопротивления у обыкновенной лампы накаливания. В конструкции таких ламп есть вольфрамовая нить, при включении электрическое сопротивление вольфрама меньше (нить холодная), чем при работе.

Сопротивление увеличивается с ростом температуры, следовательно, при включении лампы её мощность намного больше, чем во время работы. При включении лампы накаливания присутствуют пусковые токи.

Мощность любого прибора рассчитается как произведение напряжения (в вольтах) и силы тока (в амперах). По мере увеличения силы тока растет мощность, а значит, возрастает нагрузка на стабилизатор, генератор и источник питания. Определение пусковых токов можно сформулировать так: электроприборы или их элементы, имеющие инерционные свойства, в момент запуска дают большую нагрузку на электрическую сеть или питающий прибор, чем в процессе работы.

Значение пусковых токов зависит не только от усилия по раскрутке ротора двигателя или насоса до номинальных оборотов, но и от изменения сопротивления проводника. Чем меньше сопротивление, тем больше величина силы тока, который может протекать по нему. При нагреве уменьшается сопротивление и снижается возможность проводника пропускать большие токи.

Помимо вращающего момента и электросопротивления дополнительную электрическую мощность в момент старта прибору придаёт индуктивная мощность. В момент включения люминесцентной лампы у индуктивной катушки сопротивление мало. Также действует мощность для поджига разряда, что увеличивает силу тока.

Влияние пусковых токов особенно важно для стабилизаторов напряжения и источников бесперебойного питания on-line типа. Стабилизаторы работают в одном из двух режимов работы: номинальном или предельном.

В номинальном режиме работы сохраняется мощность, но при ухудшении качества электроснабжения в сети наблюдается очень низкое или, напротив, очень высокое напряжение. В таком случае стабилизатор переходит в предельный режим работы, его выходная мощность снижается примерно на 30 %. Если при этом происходит перегрузка по пусковым токам, то он выключится, сработает система защиты. Если это будет повторяться часто, срок службы качественного стабилизатора будет небольшим (что уж говорить о китайской технике).

С ИБП типа on-line дела обстоят сложнее. Если на такой прибор дается нагрузка, превышающая номинальную (а у пусковых токов очень большая скорость, и они проходят любую защиту), предохранители не успевают сработать, и источник питания может сгореть. Это негарантийный случай и ремонт будет стоить значительных средств.

Единственный вид ИБП, который может выдерживать пусковые токи, в 2–3 раза превышающие номинал, — системы резервного электропитания линейно-интерактивного типа. Максимальные пусковые токи дают компрессоры холодильников (однокамерные — до 1 кВт, двухкамерные — до 1,8 кВт), а также глубинные насосы. Их мощность во время запуска превышает номинал в 5–7 раз. Самый маленький коэффициент запуска (равный 2) отмечается у насосов Grundfos с системой плавного пуска.

При выборе источников электроснабжения или стабилизатора напряжения нужно учитывать временной фактор влияния пусковых токов. При первом включении стабилизатора или генератора все электроприборы начнут работу одновременно и суммарная нагрузка будет большая.

При дальнейшей работе потребитель должен оценить вероятность одновременного запуска приборов с большими пусковыми токами (к примеру, холодильника, насоса и стиральной машины).

Если стабилизатор или ИБП имеет небольшую мощность, то следует самостоятельно контролировать включение техники с пусковыми токами.

Выводы:

  • При подсчёте суммарной мощности электротехники мощность приборов с пусковыми токами нужно рассчитывать не по номиналу, а с учётом пусковых токов (в Вт либо в А).

  • Пусковые токи даёт техника, в конструкции которой есть электродвигатель, насос, компрессор, нить накаливания или катушка индуктивности.

  • Чем хуже напряжение в магистральном проводе (ниже 150 В или выше 250 В), тем более высокий номинал должен быть у стабилизатора или ИБП (примерно на 30 % больше суммарной мощности работающей техники).

Пусковые токи можно ассоциировать с началом движения велосипеда: в момент начала движения нужно большое усилие, чтобы раскрутить колёса, но когда велосипед приходит в движение, требуется меньше сил для поддержания скорости.

Примеры номинальной мощности и мощности при запуске бытовой техники

В таблице не отражены точные значения электрических приборов, предоставлены лишь ориентировочные цифры для понимания алгоритма выбора стабилизатора напряжения и ИБП.

Источник: http://StabMart.ru/articles/puskovye-toki.html