Как узнать мощность диода

Содержание

Проверка диодов мультиметром: тонкости от мастеров

Как узнать мощность диода

Диод

Сегодня без электроники никуда. Она является составной частью любого современного прибора или гаджета. При этом все приборы, как это ни печально, не могут работать вечно и периодически ломаются. Одной из довольно распространенных причин поломки целого ряди электроприборов, является выход из строя такого элемента электросети, как диод.

Провести проверку исправности этого компонента можно своими руками в домашних условиях. Эта статья расскажет вам, как проверить диод мультиметром, а также о том, что собой представляют данные элементы и каков сам измерительный прибор.

Диод диоду рознь

Стандартный диод представляет собой компонент электросети и выступает в роли полупроводника с p-n переходом. Его строение позволяет пропускать ток по цепи только в одном направлении — от анода к катоду (разные концы детали). Для этого нужно подать на анод «+», а на катод – «-».

Обратите внимание! Течь в обратном направлении, от катода к аноду, электрический ток в диодах не может.

Из-за такой особенности изделия, при подозрении на предмет поломки, его можно проверить тестером или мультметром.
На сегодняшний день в радиоэлектронике существует несколько видов диодов:

Виды диодов

  • светодиод. При прохождении электрического тока через такой элемент он начинает светиться в результате трансформации энергии в видимое свечение;
  • защитный или обычный диод. Такие элементы в электросети выполняют роль супрессора или ограничителя напряжения. Одной из разновидностей данного элемента является диод Шоттки. Его еще называют как диод с барьером Шоттки. Такой элемент при прямом включении дает малое падение напряжения. В Шоттки вместо p-n перехода применяется переход металл-полупроводник.

Если обычные детали и светодиоды используются в превалирующем большинстве электроприборов, то Шоттки – преимущественно в качественных блоках питания (например, для таких приборов, как компьютеры).Стоит отметить, что проверка обычного диода и Шоттки практически ни чем особым не отличается, так как проводится по одному и тому же принципу. Поэтому не стоит беспокоиться по данному вопросу, ведь принцип работы и Шоттки, и обычных диодов идентичен.

Обратите внимание! Здесь только стоит отметить, что Шоттки в большинстве случаев встречаются сдвоенными, размещаясь в общем корпусе. При этом они имеют общий катод. В такой ситуации можно эти детали не выпаивать, а проверить «на месте».

Диод Шоттки

Являясь компонентом электронной схемы, такие полупроводниковые элементы довольно часто выходят из строя. Самыми распространенными причинами выхода их из строя бывают:

  • превышение максимально допустимого уровня прямого тока;
  • превышение обратного напряжения;
  • некачественная деталь;
  • нарушение правил эксплуатации прибора, установленных производителем.

При этом вне зависимости от причины потери работоспособности выход из строя может быть непосредственно обусловлен либо «пробоем», либо коротким замыканием.
В любом случае, если имеется предположение о выходе электросети из строя в зоне полупроводника, необходимо провести его диагностику с помощью специального прибора – мультиметра. Только для проведения таких манипуляций необходимо знать, как проверить диод с его помощью правильно.

Мультиметр

Мультиметр является универсальным прибором, который выполняет ряд функций:

  • измеряет напряжение;
  • определяет сопротивление;
  • проверяет провода на предмет наличия обрывов.

Мультиметр

С помощью этого прибора даже можно определить пригодность батарейки.

Как проводится проверка

После того, как мы разобрались с полупроводниками электрической схемы и предназначением прибора, можно ответить на вопрос «как проверить диод на исправность?».
Вся суть проверки диодов мультиметром заключается в их односторонней пропускной способности электрического тока.

При соблюдении этого правила элемент электрической схемы считается функционирующим правильно и без сбоев.
Обычные диоды и Шоттки можно спокойно проверить с помощью данного прибора.

Чтобы проверить этот полупроводниковый элемент мультиметром, необходимо проделать следующие манипуляции:

Проверка

  • необходимо удостовериться, что на вашем мультиметре имеется функция проверки диодов;
  • при наличии такой функции подключаем щупы прибора к той стороне полупроводника, с которой будет осуществляться «прозвон». Если данная функция отсутствует, тогда переводим прибор с помощью переключателя на значение 1кОМ. Также следует выбрать режим для измерения сопротивления;
  • красный провод измерительного устройства необходимо подключить к анодному концу, а черный – к катодному;
  • после этого нужно наблюдать за изменениями прямого сопротивления полупроводника;
  • делаем выводы о имеющемся или отсутствующем напряжении

После этого прибор можно переключить, чтобы проверить на предмет утечки или высокого замыкания. Для этого необходимо поменять места вывода диода. В таком состоянии также необходимо провести оценку полученных значений прибора.

Проверка диодного моста

Диодный мост

Иногда имеется ситуация, когда нужно проверить на работоспособность диодный мост. Он имеет вид сборки, состоящей из четырех полупроводников. Они соединяются таким образом, чтобы переменное напряжение, подаваемое к двум из четырех спаянных элементов, переходило в постоянное. Последнее снимается с двух других выводов. В результате происходит выпрямление переменного напряжения и перевод его в постоянное.

По сути, принцип проверки в этой ситуации остается таким же, как было описано выше. Единственной особенностью тут является определение, к какому выводу будет подключен измерительный прибор. Здесь имеется четыре варианта подключения, которые следует «прозвонить»:

  • выводы 1 – 2;
  • выводы 2 – 3;
  • выводы 1 – 4;
  • выводы 4 – 3;

Проверив каждый выход, вы получите четыре результата. Полученные показатели следует оценивать по тому же принципу, что и для отдельного полупроводника.

Анализируем результаты

При проверке диодов (обычного и Шоттки) с помощью мультиметра, вы получите определенный результат. Теперь нужно понять, что он может означать. К признакам, которые свидетельствуют в пользу исправности полупроводника, относятся следующие моменты:

  • при подключении детали электросхемы к прибору последний будет выдавать величину имеющегося прямого напряжения в этом элементе;

Обратите внимание! Разные типы диодов обладают различным уровнем напряжения, по которому они и отличаются. Например, для германиевых изделий этот параметр составит 0,3-0,7 вольт

  • при подключении обратным способом (щуп прибора к аноду изделия) будет регистрироваться ноль.

Обратная проверка

Если эти два показателя соблюдаются, то полупроводник работает адекватно и причина поломки не в нем. А вот если хотя бы одни из параметров не соответствует, то элемент признается негодным и подлежит замене.Кроме этого следует учитывать, что возможна не поломка, а «утечка».

Этот неприятный дефект может проявиться при длительной эксплуатации прибора или некачественной сборке.При наличии короткого замыкания или утечки, полученное сопротивление будет довольно низким. Причем вывод необходимо делать, основываясь на виде полупроводника.

Для германиевых элементов этот показатель в данной ситуации будет иметь диапазон от 100 килоом до 1 мегаом, для кремниевых — тысячи мегаом. Для выпрямительных полупроводников данный показатель будет в разы больше.

Как видим, своими силами не так уж и сложно провести оценку работоспособности полупроводников в любом электроприборе. Вышеописанный принцип подходит для проверки диодных элементов различных типов и видов. Главное в этой ситуации правильно подключить измерительный прибор к полупроводнику и проанализировать полученные результаты.

Источник: https://1posvetu.ru/montazh-i-nastrojka/kak-proverit-diod-multimetrom.html

Как проверить диод мультиметром: полная инструкция

В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора (например, Valeo, БОШ или БПВ) и т.д. возникает необходимость проверить целостность элементов. Расскажем подробно про тестирование диодов.

Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т.д.

Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки (например, батарейку и лампочку), а будем пользоваться мультиметром (подойдет даже такая простая модель, как DT-830b) или тестером. Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.

Классификация

Диоды относятся к простым полупроводниковым радиоэлементам на основе p-n перехода. На рисунке представлено графическое обозначение наиболее распространенных типов этих устройств. Анод отмечен «+», катод – «-» (приведено для наглядности, в схемах для определения полярности достаточно графического обозначения).

Читайте также  Как выбрать автомат по мощности?

Принятые обозначения

Типы диодов, указанные на рисунке:

  • А – выпрямительный;
  • B – стабилитрон;
  • С – варикап;
  • D – СВЧ-диод (высоковольтный);
  • E – обращенный диод;
  • F – туннельный;
  • G – светодиод;
  • H – фотодиод.

Теперь рассмотрим способы проверки для каждого из перечисленных видов.

Проверяем выпрямительный диод и стабилитрон

Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии.

Режим мультиметра, при котором тестируются полупроводниковые выпрямительные диоды

Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-») к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.

Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене.

Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля.

Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему.

Тестирование с использованием регулируемого источника питания

Обозначения:

  • БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

Принцип проверки следующий:

  • производим сборку схемы;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;

Выбор необходимого режима для тестирования

  • включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
  • подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.

Тестирование варикапов

В отличие от обычных диодов, у варикапов p-n переход обладает непостоянной емкостью, величина которой пропорциональна обратному напряжению. Проверка на обрыв или замыкание для этих элементов осуществляется также, как у обычных диодов. Для проверки емкости потребуется мультиметр, у которого есть подобная функция.

Демонстрация проверки варикапа

Для тестирования потребуется установить соответствующий режим мультиметра, как показано на фото (А) и вставить деталь в разъем для конденсаторов.

Как правильно заметил один из комментаторов данной статьи, действительно, определить емкость варикапа, не оперируя номинальным напряжением невозможно. Поэтому, если возникла проблема с идентификацией по внешнему виду, потребуется собрать простую приставку для мультиметра (повторюсь для критиков, именно  цифрового мульти метра с функцией измерения емкости верки конденсаторов, например UT151B).

Приставка к мультиметру для измерения емкости варикапа

Обозначения:

  • Резисторы: R1, R2 -120 кОм (да, два резистора, да последовательно, нет одним заменить нельзя, паразитную емкость, далее без комментариев); R3 – 47 кОм; R4 – 100 Ом.
  • Конденсаторы: С1 – 0,15 мкФ; С2 – 75 пФ; С3 – 6…30 пФ; С4 – 47 мкФ га 50 вольт.

Устройство требует настройки. Она довольно проста, собранное устройство, подключается к измерительному прибору (мультиметр с функцией измерения емкости). Питание должно подаваться со стабилизированного источника питания (важно) с напряжением 9 вольт (например, батарея Крона). Меняя емкость подстрочного конденсатора (С2) добиваемся показания на индикаторе 100 пФ. Это значение мы будем вычитать от показания прибора.

Данный вариант неидеален, необходимость его практического применения вызывает сомнения, но схема наглядно  демонстрирует зависимости емкости варикапа  от номинального напряжения .

Проверка супрессора (TVS-диода)

Защитный диод, он же  ограничительный стабилитрон, супрессор и TVS-диод. Данные элементы бывают двух типов: симметричные и несимметричные. Первые используются в цепях переменного тока, вторые – постоянного. Если кратко объяснить принцип действия такого диода, то он следующий:

Увеличение  входного напряжения вызывает уменьшение внутреннего сопротивления. В результате увеличивается сила тока в цепи, что вызывает срабатывание предохранителя.  Преимущество устройства заключается в быстроте реакции, что позволяет принять на себя переизбыток напряжения и защитить устройство. Скорость срабатывания – главное достоинство защитного (TVS) диода.

Теперь о проверке. Она ничем не отличается от обычного диода. Правда есть исключение – диоды Зенера, которые также можно отнести к TVS семейству, но по сути это быстрый стабилитрон, работающий по «механизму» лавинного пробоя (эффект Зинера).  Но, проверка работоспособности скатывается к обычной прозвонке. Создание условий срабатывания приводит к выходу элемента из строя. Другими словами, способа проверки защитных функций TVS-диода нет, это как проверить спичку (годная она или нет) пытаясь поджечь.

Тестирование высоковольтных диодов

Проверить высоковольтный диод СВЧ печи тем же способом, что и обычный, не получится, в виду его особенностей. Для тестирования этого элемента, понадобится собрать схему (показанную на рисунке ниже), подключенную к блоку питания 40-45 вольт.

Схема для проверки используемого в микроволновке диода

Напряжения 40-45 вольт будет достаточно для поверки большинства элементов данного типа, методика тестирования – как у обычных диодов. Величина сопротивления R должна быть в пределах от 2кОм до 3,6кОм.

Диоды туннельного и обращенного типа

Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке.

Тестирование диодов туннельного типа

Перечень элементов:

  • VD – тестируемый диод туннельного типа;
  • Uп – любой гальванический источник питания, у которого ток разряда около 50 мА;
  • Сопротивления: R1 – 12Ω, R2 – 22Ω, R3 – 600Ω.

Диапазон измерений, выставленный на мультиметре ,не должен быть меньше тока максимума диода, этот параметр указан в даташит (datasheet) радиоэлемента.

: Пример проверки диода мультиметром

Алгоритм тестирования:

  • устанавливается максимальное значение на переменном резисторе R3;
  • подключается тестируемый элемент, с соблюдением указанной на схеме полярности;
  • уменьшая величину R3, наблюдаем за показаниями измерительного прибора.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до Imax диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до Imin, после чего снова начнет расти.

Тестирование светодиодов

Проверка светодиодов практически ничем не отличается от тестирования выпрямительных диодов. Как это делать, было описано выше. Светодиодную ленту (точнее ее smd элементы), инфракрасный светодиод, а также лазерный, проверяем по той же методике.

К сожалению, мощный радиоэлемент данной группы, у которого повышенное рабочее напряжение, проверить указанным способом не получится. В этом случае дополнительно понадобится стабилизированный источник питания. Алгоритм тестирования следующий:

  • собираем схему, как показано на рисунке. На блоки питания выставляется рабочее напряжение светодиода (указано в даташит). Диапазон измерения на мультиметре должен быть до 10 А. Заметим, что можно использовать зарядное устройство в качестве БП, но тогда необходимо добавить токоограничивающие сопротивление;

Измерение номинального тока на светодиоде

  • измеряем номинальный ток и выключаем блок питания;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 20 В, и подключаем прибор параллельно тестируемому элементу;
  • включаем блок питания и снимаем параметры рабочего напряжения;
  • сравниваем полученные данные с указанными в даташит, и на основании этого анализа определяем работоспособность светодиода.

Проверяем фотодиод

При простой проверке измеряется обратное и прямое сопротивление помещенного под источник света радиоэлемента, после чего его затемняют и повторяют процедуру. Для более точного тестирования потребуется снять вольтамперную характеристику, сделать это можно при помощи несложной схемы.

Пример схемы для снятия вольтамперных характеристик

Для засветки фотодиода в процессе тестирования можно использовать в качестве источника освещения лампу накаливания мощностью от 60Вт или поднести радиодеталь к люстре.

У фотодиодов иногда встречается характерный дефект, который проявляется в виде хаотического изменения тока. Для обнаружения такой неисправности необходимо подключить тестируемый элемент так, как это показано на рисунке, и измерять величину обратного тока  в течение пары минут.

Проверка на «ползучесть»

Если в процессе тестирования уровень тока будет оставаться неизменным, значит, фотодиод можно считать рабочим.

Тестирование без выпайки.

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали (например, транзистор, конденсатор, тиристор и т.д.), не всегда удается. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять.

Источник: https://www.asutpp.ru/kak-proverit-diod.html

Как определить на сколько вольт светодиод?

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии. Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

Читайте также  Автомобильные генераторы повышенной мощности

Теоретический метод

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.

Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.

Существуют и другие способы тестирования излучающих диодов, о которых подробно написано в данной статье.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе. В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует.

Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи. С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но ,с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.

Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта.

В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт. Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Узнать все технические характеристики светодиода можно из интернета. Для этого нужно скачать datasheet на схожую по внешним признакам модель, обязательно такого же цвета свечения, сверить паспортные размеры с действительными и выписать номинальные значения тока и падения напряжения. Следует учитывать, что данная методика весьма приблизительна, так как в одинаковом корпусе могут быть изготовлены светодиоды на 20 мА и на 150 мА с разбросом напряжения до 0,5 вольт.

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет. В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать.

Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору.

Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Источник: https://ledjournal.info/vopros-otvet/kak-uznat-naprjazhenie-svetodioda.html

Как определить ток светодиода

Технологии развиваются с невероятной скорость, что приводит к все большему использованию светодиодов. У них есть много преимуществ, из-за чего их стали активно использовать в бытовых или уличных светильниках.

Необходимо знать несколько параметров, помогающих правильно использовать светодиоды. Среди них стоит выделить номинальный ток и рабочее напряжение.

Если у человека нет информация об определенном параметре, необходимо выяснить, как узнать ток светодиода.

Почему используют светодиоды?

Они имеют много преимуществ, которые увеличивают их популярность:

— надежные, обеспечивают высокую прочность;- отсутствует высокое напряжение, это способно уберечь владельца от пожаров (Вы сможете спокойно провести эксперимент, выяснив, как определить рабочее напряжение светодиода);- они не большие, их удобно переносить и использовать;- долговечность — если Вы в ходе экспериментов не будете пытаться увеличить яркость ещё больше, когда уже достигнут максимум, они прослужат Вам очень долго;

— имеют низкое напряжение питания, потребляют немного электроэнергии.

Учтите некоторые недостатки. Они достаточно дорогие, если сравнивать с обычными лампами накаливания. От одного элемента Вы получите минимум светового потока. Источник питания должен соответствовать определенным требованиям.

Определение тока с помощью мультиметра

Есть два способа узнать ток. Давайте сначала выясним, как узнать напряжение светодиода с помощью мультиметра.

Данные приспособления могут служить несколько лет, поэтому их используют много людей. Однако, если будут работать при повышенной напряженности, начнут быстро выходить из строя. Перед выяснением силы тока необходимо рассчитать напряжение.

Его определяют по цвету свечения. Белые, зеленые и синие имеют напряжения питания около 3 Вольт (иногда может доходить до 3,5). Желтые и красные варьируются от 1,8 до 2,4 В.

В обычно ток 20 мили Ампер, есть исключения, у которых сила тока выше 150 мА.

У многих возникает вопрос, как узнать номинальный ток светодиода. Без специального справочника сделать это очень сложно. Необходимо определять по колбе: чем она больше, тем больше ток. Если Вы пересекли черту допустимого, спектр света измениться. Например, желтый светодиод может приобретать белый оттенок. Это говорит о превышении силы тока.

Придерживайтесь следующим советам:

— У них слишком повышена чувствительноcть. Они резко реагируют, если питающее напряжение повышено.- Вольты необходимо погасить резистором, если решаете использовать напряжение намного выше, чем рекомендуется.

— Включив тестер в разрыв цепи, получится измерять потребляемый ток.

Давайте узнаем, как узнать на какое напряжение рассчитан проверенный светодиод.

Определение тока светодиода

Развитие технологий позволило создавать нестандартные устройства. Большинство думает, что между ними нет никаких различий, кроме цвета и размера. Однако они особенны по отдельности, не похожи друг на друга.

Например, ток красных имеет одно значение, оно составляет около 20 мА. В это же время ток зеленых находится в пределах от 5 до 20 мили Ампер.

Эта величина обязательна, относится к ней халатно нельзя, при этом бывают случаи, когда приходится узнавать её без конкретных характеристик.

Если Вы хотите упростить себе задачу, просто обрежьте их под острым углом небольшими кусками, отрезки монтажного провода после этого необходимо одеть на них. Это упростит задачу, исчезнет необходимо постоянного перепаивать светодиод.

Далее к одному из проводов так же подсоединяете резистор 2,2 кОм, подключаете к блоку питания только в произвольной полярности. Он может не загореться, тогда необходимо поменять полярность. Как только загорелся, отключаете и ставьте «+» на проводе, который подключен к плюсу блока питания.

Главное уже сделано, осталось узнать, как определить напряжение светодиода.

Собираем электрическую цепь: резистор 2,2 кОМ заменяем на 5600м для светодиодов красного цвета, сначала подключаем переменный резистор, после — миллиамперметр. Параллельно красному необходимо подключить вольтметр, у которого разрешение должно быть 0,1В.

Переменный резистор устанавливается на максимальное сопротивление. Собранную электрическую цепь подключаете к блоку питания. Делать это необходимо с той полярностью, которую Вы ранее узнали.

Как только светодиод начнет слабо светиться, Вам необходимо будет записать показания устройств.

Осталось сделать всего пару шагов, чтобы Вы окончательно узнали, как узнать прямое напряжение данного светодиода. После подключения необходимо медленно уменьшать сопротивление, наблюдая за изменениями вольтметра. Напряжение начнет возрастать в пределах 0,3-0,5 Вольт, соответственно яркость начнет становится больше. Не забывайте, что через каждый 0,1 Вольт необходимо записывать показания.

На что обращать внимание при выборе? Во время выбора, стоит обратить внимание на следующее:

— какой корпус у устройства;- насколько высокий рабочий ток;- какая длина волны данного свечения;

— какой угол свечения.

Помните, что сопротивление резистора уменьшать нужно только тогда, когда напряжение будет возрастать меньше, чем ток. В этот момент у Вас получилось достигнуть оптимального тока светодиода. Дальше нет смысла увеличивать, ведь яркость больше не станет, а срок службы уменьшится.

Источник:

Читайте также  Как подобрать дифавтомат по мощности

Как определить параметры светодиода?

В связи с глобальным развитием технологий широкое применение в электронике получили светодиоды. Они обладают множеством особенностей, из которых можно выделить компактность и яркое свечение. Помимо номинального тока, который является их главным параметром, нужно знать рабочее напряжение светодиодов.

Этот параметр часто используют для проведения расчетов. Если правильно подобрать параметры устройства, можно продлить срок его службы. Напряжение для светодиода является разницей потенциалов на p-n-переходе, что отмечается в паспортных данных прибора.

Бывают случаи, когда нет информации о конкретном изделии, тогда возникает вопрос: «Как определить падение напряжения на светодиоде?».

Определение тока

Для осуществления этого есть несколько методов. Рассмотрим наиболее простой из них. Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов.

Измерение силы тока светодиода

Тестирование проводится следующим образом:

  • Щупы мультиметра подключаются плюсовым выводом к аноду, а минусовым к катоду.
  • Анодный вывод у светодиода делается длиннее, чем катодный.
  • Прозванивать можно светодиоды, у которых небольшое напряжение питания. Если у них большая мощность, применять такой метод нельзя.

Лучше воспользоваться проверенным способом измерения характеристик устройства. Для этого понадобятся:

  • блок питания, рассчитанный на 12 В;
  • мультиамперметр;
  • постоянные резисторы – 2,2 и 1 кОм, а также 560 Ом;
  • переменный резистор – 470–680 Ом;
  • вольтметр, желательно цифровой;
  • провода для коммутации схемы.

Как и в предыдущем случае, потребуется узнать полярность диода. Если по его выводам непонятно, где «+» и «-», тогда придется к одному из выводов подсоединить резистор 2,2 кОм. После этого нужно подключить светодиод к блоку питания. При его свечении нужно отключить питание и промаркировать нужный выход «+».

Теперь нужно заменить резистор 2,2 кОм на 560 Ом. В эту цепь последовательно подсоединяется переменный резистор, а также миллиамперметр для проведения замера. Вольтметр, у которого разрешение 0,1 В, подключается параллельно светодиоду. После этого необходимо установить максимальное сопротивление у переменного резистора.

Мультиметр для замера силы тока и напряжения светодиода

Можно подсоединить собранную схему к блоку питания, соблюдая полярность. После включения у светодиода будет блеклое свечение. Сопротивление постепенно снижают и следят за вольтметром.

Определенное время напряжение будет расти до 0,5 В, расти будет и ток, что влияет на увеличение яркости светодиода. Необходимо фиксировать показания каждые 0,1 В.

Оптимальный рабочий ток будет достигнут, когда величина напряжения станет расти медленнее силы тока, а яркость перестанет увеличиваться.

Как узнать падение напряжения?

Для того чтобы определить, на сколько вольт светодиод, можно воспользоваться теоретическим и практическим методами. Они оба хороши и применяются в зависимости от ситуации и сложности испытуемого прибора.

Как отличить мощный 1Вт светодиод от 3 Вт

Свечение кристаллов

Достаточно часто людям приходится покупать светодиоды мощностью 1 Вт и 3 Вт. Если мы делаем это в проверенных магазинах, то большой проблемы нет. А если это мы делаем на новых площадках? Как не обмануться? Как отличить 1 Вт светодиоды от 3 Вт? В принципе, задача не из невозможных… Посмотрим и попробуем…

Что такое мощные светодиоды 3 Вт и 1 Вт разбирать не буду. Если Вы читаете этот материал, то мне кажется, достаточно не плохо понимаете что и к чему. Для чего и для какой цели покупали.

к оглавлению ↑

Сравнение двух светодиодов 1 Вт и 3 Вт

Слева 1 Вт справа 3 Вт

Визуальное сравнение двух светодиодов не даст Вам практически никакой информации, если ни разу с этим не сталкивались. Более продвинутые могут отличить на глаз какой светодиод будет мощнее, а какой — нет, рассмотрев кристалл. Но не всегда и это будет возможно сделать визуально. Кристалл не всегда виден.

Для определения какой LEDs 1 Вт или 3 Вт лежит на столе — стоит провести некоторые измерения и эксперименты.

к оглавлению ↑

Характеристики светодиодов 1 Вт и 3 Вт

Мною были взяты светодиоды из местного магазина (происхождение не известно) и диод приобретенный на Aliexpress. По заверению продавцов — оба по 3 W.

Обратимся к характеристикам светодиодов на 1 и 3 Вт. Возьмем наиболее популярные от Epistar. Светодиоды от других производителей, в принципе, не отличаются от этих данных.

Характеристики 3 Вт и 1 Вт светодиодов

Как читать ТТХ светодиодных источников света — смотрите в статье.

Мы видим, что рабочий ток 1 Вт диода составляет 350мА, 3 Вт — 700мА. Максимальный пиковый ток у обоих 0,8 А. Т.е. оба этих диода будут работать на максимально-возможном 0,75А. Они будут работать и при 1 А, но не долго). Не стоит разгонять чипы без надобности, мы все-таки радеем за долговечность. Тем более, если Вы приобрели правильный светодиод, то и яркости Вам хватит.

к оглавлению ↑

Как различить светодиоды 3 Вт и 1 Вт

При включении чипов на полную мощность Вы вряд ли сможете отличить  1 Вт и 3 Вт по свету. Глаз не воспримет слишком яркое свечение.

Можно использовать черную коробку, по отдельности включать светодиоды и смотреть, какой образец даст больший световой эффект. Вместо коробки можно использовать черный лист. Это пример, но смысл понятен, думаю.

Если у Вас есть два диода, не понятного происхождения, то определить какой из них 3 Вт, а какой 1 Вт можно следующим способом: подключаем оба к источнику питания и подаем на них 3,5 В. При этом начальное значение тока должны быть в пределах 350мА. Посмотрим на графическую зависимость яркости от тока.

Зависимости светодиодов 1 и 3 Вт от тока

При увеличении начального напряжения в 3,5 В яркость 1 Вт диода еще немного увеличится и практически остановится, если дальше повышать напряжение (ток). В случае, если у Вас 3 Вт диод, то при увеличении напряжения от 3,5 В ток будет расти, а согласно графику, приведенному выше, мы видим, что яркость будет постепенно увеличиваться до момента, пока ток не достигнет 700 мА.

График зависимости тока от напряжения 1 и 3 Вт светодиодов

Т.е. визуально мы можем определить любой светодиод 1 Вт или 3 Вт если подав на него ток 350 мА будем постепенно увеличивать его. Увеличение яркости от 350 мА говорит о том, что перед нами 3 Вт диод. Незначительное увеличение яркости от 350 до 700 мА говорит о том, что перед нами 1 Вт диод.

Другой способ определить где 3 Вт или 1 Вт мощный светодиод — нагрев. Здесь простая физика. При тех же 350 мА 1 Вт светодиод будет нагреваться быстро. И в руке его держать Вы не сможете. 3 Вт же светодиод при том же токе можно достаточно долго держать в руке без заметных неприятных ощущений. Естественно, что это побочный способ определения где какой диод. Но имеет право на существование.

Ну и последний способ — отличить светодиоды по размеру кристалла. Чтобы наверняка это делать, стоит приобрести USB микроскоп. Это бюджетный вариант и достаточно качественный, с необходимыми гаджетами. Здесь можно посмотреть много микроскопов различной ценовой категории. Вообще USB микроскоп интересная штуковина и пригодится дома не один раз.

Далее используя калибровочную линейку и предустановленную программу можно легко замерить размеры кристалла. С ним мы точно можем сказать, какой размер кристалла установлен. Однако и этот способ не даст нам точного понятия где какой диод. Но беря во внимание, что чем больше кристалл, тем больше мощность — соответственно можно сделать вывод для себя.

Мощные диоды 1 Вт имеют размеры 30х30mil. Кристаллы в 3 Вт диодах — 45х45mil. Это, конечно идеальные размеры.

Если у Вас нет микроскопа, а хочется узнать размеры, то можно воспользоваться подручными средствами. Подадим на светодиоды очень маленький ток. Кристаллы начнут еле-еле светиться.

Свечение кристаллов

Слева мы видим, что размер кристалла на порядок больше. Именно этот светодиод был приобретен на Aliexpress. Тот образец, что был приобретен в офф-лайн магазине явно 1 Вт, не смотря на то, что продавался с заявленной мощностью — 3Вт. В принципе, мне хватило одного взгляда на кристалл через микроскоп и понять где какой диод будет. Но для себя любимого я проверил свечение по первому способу (увеличение тока) и визуальный вывод был подтвержден.

Ну вот и все. Вот такими нехитрыми способами теперь Вы можете спокойно проверить, сравнить и различить 3 Вт мощные светодиоды от 1 Вт. Но, чтобы этим не заниматься постоянно, стоит приобретать светодиодную продукцию в проверенных магазинах и площадках.

к оглавлению ↑

по измерению кристаллов для отличия 1 и 3 Вт светодиодов

Источник: https://leds-test.ru/kak-otlichit-moshhnyj-1vt-svetodiod-ot-3-vt/

Оставьте комментарий