Как сфазировать генератор с сетью

Содержание

Включение генератора в сеть

Как сфазировать генератор с сетью

Необходимость в этом приборе возникает при подключении генератора параллельно к сети переменного тока или к другому генератору. Этот процесс называется синхронизацией.

Чтобы включение прошло без вреда для генератора, добиваются одновременного выполнения трех условий:

  • Напряжения в сети и на генераторе совпадают по величине;
  • Частота генерации равна частоте напряжения в сети;
  • Угол сдвига фаз между напряжениями одноименных фаз сети и генератора равен нулю.

Напряжение на генераторе перед синхронизацией устанавливают равным напряжению сети при помощи контрольных вольтметров. Выходное напряжение регулируют изменением тока в роторе.

Для подгонки частоты генерации (fг) к величине частоты сети (fc) изменяют скорость вращения генератора. На электростанциях для этого регулируется количество пара (воды), подающегося на лопатки турбины.

С углом сдвига фаз намного сложнее. Точного равенства частоты генерации частоте сети добиться невозможно. Но, даже если выполнить это условие, равенства редко удается достичь. Процесс усложняется еще и тем, что для регулировки изменяется скорость вращения вала турбоагрегата. При многотонной массе валов промышленных аппаратов изменение скорости происходит с инерцией, которую трудно учесть.

В итоге после уравнивания частот все равно присутствует разность, называемая частотой скольжения:

Следствием частоты скольжения становится постоянное цикличное изменение угла между напряжениями сети и генератора от нуля до 360 градусов. Чем больше частота скольжения, тем быстрее изменяется угол, и наоборот.

Для визуального отображения угла между напряжениями сети и генератора нужен синхроноскоп. К нему подводятся напряжения одноименных фаз сети и генератора. Нулевое положение стрелки на нем происходит при угле, равным нулю, противоположное значение – при 180 градусах.

Стрелочный синхроноскоп

Стрелка синхроноскопа при синхронизации постоянно вращается. По направлению вращения определяют, больше частота генерации частоты в сети или меньше. В момент прохода стрелки через нулевое положение генератор включают в сеть.

Включение генератора в момент, когда стрелка показывает на 180 градусов, приводит к возникновению токов через обмотку статора, превышающих расчетный ток короткого замыкания. За время, пока подействует защита, этот ток успеет разрушить обмотку статора. Генератор придется отправить в капитальный ремонт.

Синхроноскоп со светодиодной индикацией

Если генератор включить в сеть при меньших углах, но не равных нулю, через обмотку статора произойдет кратковременный бросок тока. Это тоже аварийный режим его работы. Повреждений обмотки не произойдет, но систематическое несинхронное включение агрегата в сеть со временем приведет к поломке. Поэтому несинхронное включение запрещено.

Колонка синхронизации

Для визуального контроля параметров при включении генераторов в сеть на Главном щите управления электростанций устанавливается колонка синхронизации. На ней размещаются приборы:

  • Вольтметр контроля напряжения в сети.
  • Вольтметр контроля напряжения на генераторе.
  • Частотомер сети.
  • Частотомер генератора.
  • Синхроноскоп.

Иногда на колонке дополнительно ставят контрольную лампу, включенную между одной из фаз сети и генератора. Лампа меняет яркость свечения одновременно с движением стрелки синхроноскопа. При угле между напряжениями, равном нулю, она гаснет, при 180 градусах – горит в полную яркость. На передвижных электростанциях такие лампы иногда устанавливаются на всех трех фазах совместно (или вместо) синхроноскопа.

Колонка синхронизации рядом с пультом управления генератором

Поскольку генераторов на станциях много, предусматривается возможность для их поочередного подключения к колонке синхронизации.

Автоматические синхронизаторы

Поскольку процесс синхронизации трудно контролировать вручную, он проводится в автоматическом режиме. Для этого на электростанциях устанавливаются приборы, называемые автосинхронизаторами.

Регулирование оборотов генератора в ручном режиме выполняется ключами, подающими импульс на регулирующее устройство. На тепловых электростанциях – это электродвигатель паровой задвижки на входе турбины. Кратковременно поворачивая ключ в положения «Больше» или «Меньше», оперативный персонал открывает или закрывает задвижку. Так обеспечивается регулировка оборотов турбины. Эту же операцию выполняет и автосинхронизатор, работающий в автоматическом режиме.

Как и к синхроноскопу, к нему подключены напряжения с выхода генератора и из сети. Он постоянно контролирует их величины и выдает импульс на включение только в момент выполнения условий, перечисленных в начале этой статьи. Но с одним отличием: команда на включение генератора в сеть выдается заблаговременно, с заданной при настройке синхронизатора задержкой.

Для чего она нужна? Дело в том, что выключатель, включающий генератор в сеть, характеризуется собственным временем включения. Оно небольшое (десятые доли секунды), но этого достаточно, чтобы за время срабатывания стрелка синхроноскопа успела уйти с нулевого положения. Поэтому в настройки синхронизатора и добавляется задержка по времени, называемая временем опережения. Для каждого типа выключателя (масляного, вакуумного, элегазового) она имеет разное значение.

Шкафы с синхронизаторами

Автосинхронизатор не включает генератор в сеть при частоте скольжения, равной нулю. Процесс регулировки оборотов турбины настолько не стабилен, что частота вращения в любой момент может измениться. Поэтому включение происходит при небольшой частоте скольжения, отличной от нуля.

Процесс синхронизации

Включение генераторов в сеть на электростанциях происходит так.

  1. После выхода турбоагрегата на номинальные обороты управление им передается оперативному персоналу Главного щита управления. Персонал турбинного цеха после передачи управления не вмешивается в его работу.
  2. По частотомерам на колонке синхронизации персонал уравнивает частоту генерации с частотой сети, изменяя скорость вращения турбины.
  3. По вольтметрам на колонке синхронизации, изменяя ток в роторе, устанавливается напряжение на статоре генератора, равное напряжению сети. Выполняется это только после уравнивания частот, так как с изменением частоты изменяется и выходное напряжение статора.
  4. Скорость вращения турбины изменяется в большую или меньшую сторону на величину, требуемую для нормальной работы автосинхронизатора.
  5. Автосинхронизатор включается в работу. Анализируя величину частоты скольжения, от выдает импульсы на изменение оборотов турбины, добиваясь требуемой частоты ее вращения.
  6. Подогнав величину скольжения, автосинхронизатор автоматически переключается в режим измерения угла между напряжениями и вычисляет момент, когда подать импульс на включение, чтобы оно произошло при его нулевом значении. Как только этот момент будет достигнут, происходит включение выключателя.

Процесс отличается на разных электростанциях и при применении различных типов синхронизаторов. Они, как и устройства релейной защиты, прошли три стадии развития:

  • релейно-механические;
  • полупроводниковые;
  • микропроцессорные.

При этом повышалась точность их работы, надежность и удобство применения.

Источник: http://electric-tolk.ru/vklyuchenie-generatorov-v-set/

Параллельная работа генераторов дизельных электростанций (ДЭС)

 

Параллельная работа генераторов ДЭС обеспечивает повышение надежности электроснабжения потребителей и экономичности эксплуатации ДЭС, а также уменьшает отклонения частоты и напряжения при колебаниях нагрузки. Поэтому для большинства генераторов ДЭС предусмотрен режим параллельной работы как с внешней электросистемой, так и с другими ДЭС.

Параллельная работа генераторов требует выполнения специальных условий, необходимых для безаварийного включения генераторов ДЭС на параллельную работу, и устойчивой, надежной работы нескольких ДЭС в условиях эксплуатации.

Синхронизация генераторов при включении на параллельную работу

Имеются два способа синхронизации генераторов: точная синхронизация и самосинхронизация.

При включении генератора способом точной синхронизации ток синхронизации в момент включения генератора на параллельную работу с сетью (или другим генератором) должен быть минимальным.

Для выполнения этого условия необходимо фазоуказателем провести фазировку генератора с сетью, обеспечить равенство действующих значений напряжения генератора и сети (по вольтметру), добиться равенства частот генератора и сети (по частотомеру) и произвести включение генератора в момент совпадения векторов фазных напряжений генератора и сети (с помощью синхронизирующих ламп).

Для автоматического включения генератора способом точной, синхронизации в агрегатах АСДА-100 (см.рис.1) использован блок синхронизатора. После пуска и вывода электроагрегата на подсинхронную частоту вращения блок контроля напряжения и частоты вращения выдает сигнал на возбуждение синхронного генератора.

Рис.1. Принципиальная схема дизель-генератора АСДА-100
с полупроводниковыми блоками автоматики

Схема блока синхронизатора производит автоматическую подгонку напряжения и контроль разности напряжений, подгонку частоты и контроль разности частот генератора, включаемого на параллельную работу, и сети, а после выполнения заданных условий синхронизации дает сигнал на включение генератора на параллельную работу с сетью.

Способ самосинхронизации

При включении способом самосинхронизации невозбужденный генератор (выключатель гашения поля АГП включен) раскручивается дизелем до номинальной частоты вращения (с отклонением ±2%) и включается в сеть автоматическим выключателем генератора. Затем подается возбуждение (АГП отключен) и генератор втягивается в синхронизм.

В этом случае до подключения генератора в сеть на его обмотках имеется лишь небольшое остаточное напряжение. Поэтому бросок тока, возникающий в статоре в момент синхронизации, будет незначителен. После подачи возбуждения на генератор по мере нарастания магнитного потока ротора появляется синхронный момент, под воздействием которого генератор входит в синхронизм.

Читайте также  Газовый генератор от баллона

Этот способ прост, быстр, исключает возможность ошибочного включения генератора и обеспечивает автоматизацию процесса синхронизации. Поэтому он нашел широкое применение на ДЭС. Существует множество ручных, полуавтоматических и автоматических схем и устройств самосинхронизации.

На ДЭС серии АС применена схема автоматической самосинхронизации с использованием реле времени синхронизации РВС.

Мощность генераторов ДЭС, включаемых на параллельную работу способом самосинхронизации, не играет существенной роли. На ДЭС разрешается подключать на параллельную работу этим способом даже генератор, мощность которого превышает мощность всех уже работающих параллельно генераторов других ДЭС.

Кратковременное снижение напряжения при включении быстро восстанавливается и не нарушает работу потребителей. Включать генератор рекомендуется при частоте вращения несколько большей синхронной (1%), чтобы генератор сразу же принял активную нагрузку.

Подача возбуждения должна осуществляться без задержки вслед за подключением генератора к шинам, так как в противном случае генератор может не втянуться в синхронизм.

Рекомендуется включать генератор при скольжении 1-2 Гц, так как при этом сокращается время втягивания генератора в синхронизм. Шунтовой реостат в цепи возбуждения возбудителя (сопротивление уставки напряжения) необходимо устанавливать в положение, обеспечивающее надежное самовозбуждение и подъем напряжения на генераторе до нормального при его холостом ходе.

Для включения способом самосинхронизации вручную или полуавтоматически нужно, чтобы генератор перед включением работал без возбуждения (АГП отключен). Реостат в цепи возбуждения или сопротивление уставки напряжения должны обеспечивать подъем напряжения на генераторе при холостом ходе до номинального.

Агрегат разворачивают, плавно подводя к синхронной частоте вращения (ускорение 0,5-1,0 Гц/с).

Генератор подключают к шинам при погашенном поле генератора (показания вольтметров статора и возбудителя равны нулю) и разности частот по частотомеру 1-2 Гц.

Затем генератор возбуждают (включают АГП) и поднимают напряжение на нем (автоматически и вручную). После этого генератор втягивается в синхронизм и набирает нагрузку.

Выпадение генератора из синхронизма при параллельной работе

Резкое изменение и нарушение режимов работы электрической сети и генераторов, а также нарушение условий синхронизации могут вызвать выпадение из синхронизма отдельных генераторов ДЭС. О выпадении из синхронизма генераторов можно судить по показаниям приборов: амперметры в цепи статора показывают значительные толчки тока (стрелки резко колеблются до упора), вольтметры — сильно колеблющееся пониженное напряжение, показания ваттметра меняются от начала шкалы до ее конца.

Определить выпадение из синхронизма можно и по пульсирующему в такт с качанием приборов гулу генератора. При выпадении генератора из синхронизма необходимо попытаться восстановить его синхронную работу, максимально увеличивая возбуждение и уменьшая активную нагрузку, а при невозможности восстановления синхронной работы следует отключить генератор от сети.

Распределение активной мощности ДЭС, работающей параллельно с другими ДЭС или промышленной сетью

После включения генератора на параллельную работу с сетью осуществляют прием нагрузки на включенный генератор с помощью увеличения подачи топлива у первичного двигателя включаемого генератора.

Для устойчивой и надежной параллельной работы генераторов необходимо, чтобы активная мощность, отдаваемая работающими генераторами, распределялась между ними пропорционально их номинальным мощностям, так как в противном случае один из параллельно работающих генераторов окажется недогруженным, а другие перегруженными, что вызовет выход последних из строя или выпадение из синхронизма.

Пропорциональное распределение активной мощности между генераторами производится только в том случае, если приводные двигатели имеют одинаковый наклон характеристик, выражающих зависимость частоты вращения дизеля n от активной мощности Р на валу, т.е. одинаковый статизм.

При неодинаковом статизме привода и одинаковой частоте вращения параллельно работающих генераторов распределение активной мощности между ними не будет пропорционально их номинальным мощностям, как показано на рис.2. Чтобы этого не происходило, статизм двигателя заранее регулируют настройкой регулятора подачи топлива.

Рис.2. Распределение активной мощности между параллельно работающими
генераторами 1 и 2 при неравенстве статизма их двигателей.
n — частота вращения генератора;

Р — активная мощность генератора.

Обычно дизельные двигатели имеют статизм 3%, что позволяет обеспечить неравномерность распределения активной мощности между параллельно работающими генераторами не более 10% мощности меньшего генератора.

Для перераспределения активной мощности между параллельно работающими ДЭС необходимо изменить подачу топлива в дизель, например увеличить подачу топлива в дизель генератора, на который переводят активную мощность, и уменьшить подачу топлива в дизель генератора, с которого снимают активную мощность.

Распределение реактивной мощности между параллельно работающими генераторами и сетью

При эксплуатации возможны следующие случаи параллельной работы генератора: с другими генераторами, имеющими принципиально отличную систему возбуждения (например машинную или статическую); с другими такими же генераторами или генераторами, имеющими аналогичную по принципу действия и схеме систему возбуждения; с промышленной сетью.

В первом случае для пропорционального распределения реактивной мощности между генераторами необходимо, чтобы напряжение каждого из генераторов при автономной работе несколько уменьшалось с увеличением реактивной нагрузки, а статизм по реактивной мощности генераторов был одинаков.

Статизмом по реактивной мощности называют относительное изменение напряжения генератора при увеличении его реактивной мощности. При неодинаковом статизме по реактивной мощности и одинаковом напряжении параллельно работающих генераторов распределение реактивной мощности между ними будет происходить непропорционально их номинальным мощностям (рис.3).

Рис.3. Распределение реактивной мощности междупараллельно работающими генераторами 1 и 2,

имеющими неодинаковый статизм по реактивной мощности.

U — напряжение генератора;

Q — реактивная мощность генератора.

Для удовлетворительной параллельной работы генераторы должны иметь статизм по реактивной мощности 3-4%. Системы возбуждения многих генераторов не обеспечивают необходимого статизма по реактивной мощности и поэтому имеют специальное устройство параллельной работы, работа которого рассмотрена ниже.

Во втором случае пропорциональное распределение реактивных мощностей между параллельно работающими генераторами может быть достигнуто двумя путями: обеспечением одинакового их статизма по реактивной мощности, т.е. аналогично случаю параллельной работы разнотипных генераторов, или с помощью уравнительной связи обмоток возбуждения, что обеспечит самобаланс системы по реактивной мощности.

При параллельной работе со статизмом по реактивной мощности в результате увеличения реактивной нагрузки от 0 до 100% номинальной уменьшение напряжения на зажимах параллельно работающих генераторов достигает 4% начального значения, что не всегда приемлемо.

При параллельной работе с уравнительными соединениями без статизма по реактивной мощности точность поддержания напряжения на зажимах параллельно работающих генераторов будет такой же, как и при их автономной работе.

Для обеспечения удовлетворительной параллельной работы генераторы тоже должны иметь устройства па¬раллельной работы.

Если генератор, работающий параллельно с промышленной сетью, необходимо нагрузить реактивной мощностью, то нужно увеличить его ток возбуждения. Изменение тока возбуждения генератора, работающего параллельно с сетью, достигается изменением сопротивления уставки напряжения. Устойчивая параллельная работа генератора с сетью возможна лишь при наличии статизма по реактивной мощности.

Статическая система возбуждения обеспечивает увеличение тока возбуждения генератора с ростом его нагрузки.

При параллельной работе напряжения генератора и сети равны, поэтому при отсутствии статизма по реактивной мощности с увеличением последней будет увеличиваться ток возбуждения генератора.

Увеличение тока возбуждения генератора, работающего параллельно с сетью, приведет в свою очередь к дальнейшему росту его активной мощности. Этот процесс будет продолжаться до тех пор, пока генератор не выйдет из строя вследствие недопустимой перегрузит.

При наличии статизма большей реактивной мощности соответствует меньшее напряжение генератора, но напряжение определено сетью и снизить его нельзя, поэтому увеличение реактивной мощности генератора при неизменном напряжении сети невозможно.

 

  • Здесь Вы можете купить недорого бензиновые электрогенераторы

  

Источник: http://www.gigavat.com/des_ekspluataciya2.php

Фазировка

Фазировка — согласование электрических фаз между собой по полярности и направлению чередования при подключении. Правильно сфазированные обмотки соединяются в звезду и треугольник. (См. Схемы электрических соединений нейтралей электрических машин).

Под фазировкой, в обычном смысле слова, понимают подключение трёх-фазного источника питания к трёх-фазному потребителю, где принципиально важно соблюдение чередования фаз.

Например, при неправильном подключении трёх-фазных электродвигателей, они начинают вращение в обратную сторону, что приводит к нарушению технологического цикла, в котором используются эти электродвигатели в качестве приводов.

Виды фазировки

  • Фазировка линии.
  • Фазировка трансформаторов.
  • Фазировка генераторов.
  • Фазировка кабеля.
  • Фазировка электродвигателя.

Фазировка электроаппарата (машины)

Фазировкой электроаппарата или электрической машины называют правильное соединение обмоток трёх-фазного электроаппарата между собой для обеспечения правильного функционала. Так, например, фазировкой системы освещения называют правильно сфазированное подключение осветительных приборов к трёх-фазной осветительной сети для обеспечения симметрии нагрузки, работы осветительного прибора на нужном уровне напряжения и т.д.

При сборе схемы подключения трёх-фазного генератора неправильная фазировка его обмоток между собой приведёт к тому, что  токи между обмотками будут достигать значений близких к значениям токов короткого замыкания. Трехфазный генератор состоит из трёх разных обмоток, сдвинутых относительно друг друга на угол 120 градусов. Соответственно, для совместной работы их нужно сфазировать.

При подключении таких потребителей к трёхфазной сети, как ламп, электрических печей и другой активной нагрузки фазировка не важна. Однако, при подключении к трехфазной сети групп таких электроприборов следует выполнить некоторые мероприятия, которые можно отнести к фазировке.

Так, при подключении линии освещения к трёхфазному источнику питания (трансформатору 10/0.

4кВ, например) важно распределить нагрузку по фазам равномерно, иначе получится так называемый перекос мощности, который негативно сказывается на сети в целом, важно так же подключить осветительный прибор на фазное напряжение, так как при подключении их на линейное напряжение они попросту выйдут из строя.

Фазировка электроаппарата (машины) с сетью

Фазировкой самих обмоток электрических машин (фазировка выводов генератора, трансформатора и т.д.

) далеко не исчерпываются задачи, стоящие при включении в сеть электрооборудования, так как правильно сфазированный сам аппарат или электрическую машину нужно еще сфазировать с сетью, к которой он или она присоединяется.

Задача фазировки состоит в том, что нужно не только исключить короткие замыкания при соединении двух источников тока, но и не допустить между ними уравнительных токов, а в отношении электродвигателей — обеспечить необходимое направление вращения.

Читайте также  Как проверить интегралку генератора мультиметром?

Для того чтобы изменить направление вращения электродвигателя, достаточно поменять местами на его зажимах любые две фазы. Действительно, для электродвигателя важно только направление вращения, а оно сохраняется при трех вариантах присоединения (a-a, b-b, c-c; a-b, b-c, c-a; a-c, b-a, c-b), но изменяется на обратное, если в любом из этих вариантов поменять местами любые две фазы.

Трансформаторы могут иметь равные вторичные напряжения, одинаковые группы соединения обмоток и, значит, могут работать параллельно, но они могут  быть не сфазированы. Задача фазировки трансформаторов на параллельную работу состоит в том, чтобы их сфазировать их вывода «а» с  «a», «b» c «b» и «с» c «c», иначе возникнет уравнительные ток, равный или близкий к току короткого замыкания.

Проверка фазировки

Проверку фазировки проводят:

  • Индикатором напряжения. При совпадении фаз одного напряжения, например А-А, потенциал между сфазированными фазами будет близок к нулю.
  • Вольт-ампер-фазометром. ВАФ (Вольт-ампер-фазометр) показывает угол в градусах между фазами. Соответственно, по векторной диаграмме можно определить совпадающие фазы.
  • Фазоуказателем. Фазоуказатель показывает направление вращения векторов трёхфазной системы. Применяется при фазировке электродвигателей. Фазоуказатель не показывает соответствие фаз.

Причины нарушения фазировки

  1. Брак на заводе изготовителе. Ошибка маркировки выводов электрического аппарата.
  2. Человеческий фактор, ошибка при монтаже, ремонте муфт кабелей или ошиновки и т.д.
  3. Объединение разных участков сети, которые раньше работали от разных трансформаторов, вторичные напряжения которых по-разному сфазированы.

См. также

  • Схемы соединения нейтралей.
  • Линейное напряжение.
  • Фазное напряжение.

Ссылки и примечания

  • Е.А. Каминский. Звезда и треугольник. Библиотека электромонтёра. Москва, 1961 год.

Просмотров всего: 525, Просмотров за день: 1

Источник: https://www.el-info.ru/biblioteka/enciklopediya/fazirovka/

Как правильно подключить электростанцию к дому?

Добрый день, дорогие читатели сайта Сам Электрик! Сегодня мы расскажем Вам о том, как подключить генератор к сети дома своими руками. Дело в том, что подключение электростанции – ответственный процесс и если Вы неправильно выполните электромонтаж, это может повлечь за собой выход из строя оборудования либо домашней проводки, не говоря уже о собственной безопасности. Далее мы рассмотрим существующие схемы присоединения, а также предоставим несколько полезных советов по теме.

Как делать нельзя?

Первое, о чем следует рассказать – как запрещается выполнять подключение генератора к домашней сети. Некоторые горе-электрики советуют подключить электростанцию к ближайшей розетке в доме, предварительно отключив автоматы на вводном щитке.

Ни в коем случае этого не делайте, потому что мощность генератора может значительно превышать пропускную способность розетки (как правило, она выдерживает не более 3,5 кВт). Итог – превышение максимальной нагрузки, короткое замыкание, пожар.

Помимо этого, если Вы забудете отключите автоматы на вводе, то при подаче электричества в сеть, резервная станция моментально выйдет из строя.

Единственный способ обойтись без надлежащего подключения – подсоединить к электростанции удлинитель и в него уже включить те электроприборы, в которых Вы нуждаетесь. Только если Ваша резервная станция маломощная (до 4 кВт) допускается подсоединить ее через розетку. Чтобы правильно все сделать, просмотрите обязательно видео ниже.

Правильное подсоединение оборудования в розетку

Однако если у Вас на даче либо дома часто происходит отключение электроэнергии, рекомендуем подключить генератор к сети через перекидной рубильник или систему автозапуска – АВР. Как раз ниже мы и поговорим, как это сделать правильно своими руками.

Использование перекидного рубильника

Проще всего выполнить подключение электростанции к домашней сети через рубильник или трехходовой реверсивный переключатель. Разница между аппаратами в том, что рубильник устанавливается отдельно возле щитка, а переключатель можно посадить на DIN рейку, что более удобно.

Итак, для начала просмотрите на схеме, как подключить однофазный генератор к частному дому:

Монтаж через рубильник

Как Вы видите, сверху к рубильнику нужно подсоединить питание от электросети, снизу – кабель от электростанции. Средние контакты предназначены для подключения потребителей электроэнергии. Обращаем Ваше внимание на то, что рубильник либо переключатель должен находиться после счетчика, но перед вводными автоматами, как будет показано на схеме ниже (с АВР).

Что касается технологии подсоединения, она выглядит так:

  1. Отключите электропитание в доме (автоматы на щитке).
  2. Подсоедините провода согласно схеме.
  3. Заведите генератор и подождите, чтобы он несколько минут прогрелся.
  4. Переключите рубильник в положение питания от электростанции (по правилам – нижнее).

Когда на участке возобновят подачу электроэнергии, Вы должны первым делом вернуть переключатель в верхнее положение, после чего уже заглушить генератор.

Использование автозапуска

Чтобы упростить перевод дома на резервное электроснабжение, рекомендуем подключить генератор к сети дома через АВР – систему автозапуска. Принцип работы автоматики следующий:

  1. АВР постоянно следит за напряжением в сети.
  2. Если напряжение пропадает, контактор размыкает цепь, которая связываем АВР со стационарной электросетью.
  3. Включается стартер и электростанция начинает работу.
  4. Когда двигатель выйдет на нужные обороты, контактор замыкает цепь потребители – электростанция.

Когда вновь возобновится питание на участке, АВР сработает в обратном порядке: контактор разомкнет связь с генератором и переключится на стационарное электроснабжение. Какое то время домашняя электростанция проработает вхолостую.

Подключить АВР в щитке Вы можете по следующей схеме:

Наглядная видео инструкция:

Работа системы автозапуска

Если у Вас в доме сеть, имеющая 3 фазы (380 В), то рекомендуем все же сделать резервной (для подключения к генератору) только одну фазу. На эту фазу Вы сможете «посадить» только самые важные электроприборы: холодильник, освещение и, к примеру, ноутбук. Дело в том, что нередки случаи, когда при трехфазном подсоединении происходит перекос фаз, что может привести в неисправность домашнюю электропроводку.

Монтаж контура заземления

Еще один немаловажный этап подключения бензинового или дизельного генератора к сети дома – создание индивидуального контура заземления. Чтобы сделать заземление электростанции в домашних условиях Вам понадобятся 1,5-метровый металлический стержень (диаметр 15 мм) и медный провод.

Стержень вбивается практически на всю длину в почву. Желательно к нему приварить специальный зажим либо хотя бы болт для того, чтобы было проще подключить заземляющий провод. Медным проводом соедините стержень и соответствующую клемму на генераторе (как показано на фото и схеме ниже).

Рекомендации по размещению станции

Ну и последнее, о чем хотелось бы Вам рассказать – где лучше всего разместить домашнюю электростанцию. Дело в том, что такое помещение должно быть защищено от влаги и в то же время могло достаточно проветриваться. Помимо этого перед установкой генератора Вы должны учитывать, что от этой техники будет издаваться довольно неприятный шум. Учитывая данные нюансы, рекомендуется установить и подключить электростанцию в гараже либо любой другой садовой постройке, как на фото ниже.

https://www.youtube.com/watch?v=3V0zbYIOfZY

Еще один нюанс – в помещении, где должна размещаться мобильная станция, не должно быть высокой температуры. Как ни как, Вы имеете дело с горючим, не забывайте об этом! Все требования к установке генератора в частном доме мы описали в отдельной статье, с которой настоятельно рекомендуем ознакомиться!

Вот и все, что хотелось Вам рассказать о подключении электростанции своими руками. Надеемся, теперь Вы знаете, как подключить генератор к сети дома и как нужно сделать заземление этого оборудования!

Будет интересно прочитать:

Источник: https://samelectrik.ru/kak-pravilno-podklyuchit-elektrostanciyu-k-domu.html

Параллельная работа (синхронизация) дизель-генераторов

6453 5 ноября 2017

Дизельные электростанции широко используются для обеспечения резервными мощностями крупных и средних потребителей. Также они находят применение в электроснабжении предприятий, находящихся в удалении от централизованных сетей. Такие установки комплектуются как минимум двумя агрегатами. Следовательно, должна быть обеспечена безаварийная параллельная работа этих дизель генераторов.

Производители предлагают к продаже большой ассортимент различных электромашин. Возникает вопрос, почему нельзя выбрать один агрегат и ограничиться этим? Дело в том, что набор требуемой мощности с помощью нескольких ДГУ имеет существенные преимущества:

  • Несколько небольших дизель-генераторов дешевле, чем одна крупная установка равной мощности.
  • Нагрузка предприятий очень редко является постоянной величиной. Чаще всего, ее значение меняется в два-три раза, в зависимости от того, ночь это или день. Поэтому, нерационально вырабатывать ресурс крупного (и дорогого) дизель-генератора, используя его то на треть от номинальной нагрузки, то загружая его на полную мощность.
  • Схема с несколькими агрегатами значительно надежнее, чем применение одного генератора. В случае выхода из строя одной из машин электростанции, потребители не останутся полностью без электроснабжения, чего нельзя сказать про одиночную ДГУ.
  • Если в составе нагрузки есть один или несколько больших двигателей со значительными пусковыми токами, без нескольких генераторов тоже не обойтись. При пуске обычно работают они все, а затем ненужная мощность отключается.

Одним словом, дизель-генераторная электростанция — это дешевле, надежнее и удобнее, чем одиночный агрегат.

Распространенные схемы работы

Разумеется, каждая электростанция на основе ДГУ разрабатывается и комплектуется исходя из конкретных параметров нагрузки, которую нужно обеспечивать питанием:

  1. Максимальная мощность потребителей.
  2. Средняя мощность.
  3. Постоянная нагрузка или работа в резерве.
  4. Колебания нагрузки в течение суток.
  5. Величина пусковых токов оборудования.

Несмотря на это, существуют наиболее распространенные схемы построения станций, которые, в зависимости от типа требуемого электропитания делятся на следующие группы:

  • ДГУ автоматического ввода резерва (АВР). Вводится в строй в случае, если пропадает напряжение в централизованной сети электроснабжения.
  • Основной источник электроэнергии — мобильная установка или подстанция в удаленной местности.
  • Станция с периодическим наращиванием мощности — агрегаты включаются в случае недостачи электроэнергии или для обеспечения пусков больших двигателей.

Обеспечение синхронизации дизель генераторов

В теории, для того, чтобы несколько агрегатов работали одновременно (параллельно) на одну и ту же нагрузку, нужно обеспечить следующие условия:

  1. Одинаковая частота.
  2. Равные напряжения.
  3. Совпадает порядок чередования фаз.

Таким образом, нужно на выходных клеммах каждого генератора получить идеально совпадающие параметры напряжения, и только после этого запускать их параллельную работу.

Читайте также  Самодельный генератор на 220в из автомобильного генератора

Задача выглядит достаточно сложной, особенно учитывая тот факт, что необходимость включать агрегат в общую сеть может возникать до десятка раз в день, в зависимости от нужд потребителей.

Синхронизация может быть осуществлена двумя способами:

  • самосинхронизация;
  • точная синхронизация.

Рассмотрим оба способа, так как они практически одинаково часто применяются в обеспечении работы электростанций.

Самосинхронизация

«Холодный» генератор раскручивается двигателем до достижения номинальной частоты вращения. После этого агрегат подключается к сети и на обмотку возбуждения подается напряжение. Сеть сама «втягивает» агрегат в синхронную работу. Бросок тока в статоре, конечно, возникнет, но он будет небольшим, так как до включения в сеть в магнитной системе существует лишь остаточный магнетизм, который нарастает относительно медленно.

Этот способ достаточно несложен и позволяет без проблем автоматизировать процесс синхронизации. Разработано большое количество схем и устройств, в которых реализован именно этот метод.

Таким способом можно включать в сеть даже генераторы, мощность которых больше, чем мощность всех уже работающих агрегатов. Провал напряжения в сети невелик и не влияет на снабжение потребителей.

Точная синхронизация

Этот способ максимально приближен к теоретическому «идеальному» : генератор синхронизируется без малейших провалов напряжения в сети и бросков тока в обмотках агрегата. Подключиться таким образом к сети вручную — сложный технологический процесс, требующих точного измерительного оборудования. Последовательность действий должна быть следующей:

  1. Фазировка. Обычно выполняется в процессе монтажа генератора с помощью фазоуказателя.
  2. Обеспечение нужной частоты вращения. Проверяется с помощью частотомера.
  3. Достижение агрегатом действующего значения напряжения, совпадающего с напряжением сети. Контролируется вольтметром.
  4. Обеспечение полного совпадения векторов фазных напряжений агрегата с сетью с помощью синхроноскопа
  5. Включение генератора в сеть.

На современной дизель-генераторной электростанции синхронизировать агрегат вручную, конечно, нерационально. Поэтому применяют специальные контроллеры, которые после достижения генератором параметров, точно совпадающих с параметрами сети, подают сигнал на включение.

Параллельная работа в составе электростанции и распределение нагрузки дизель генераторов

После того, как генератор включен в общую сеть, он принимает на себя часть общей нагрузки. В случае, если электростанция состоит из нескольких одинаковых агрегатов, нагрузка делится между ними равномерно.

Пример работы двух резервных дизель-генераторов:

Если в параллельном режиме работают разные генераторы, необходимо, чтобы мощность, отдаваемая ими в сеть распределялась пропорционально их номинальным мощностям, иначе синхронизация дизель генераторов может быть нарушена. Увеличение или уменьшение части нагрузки, воспринимаемой конкретным агрегатом регулируется увеличением или уменьшением подачи топлива на соответствующий дизельный двигатель.

Устойчивость синхронной работы ДГУ

Самое главное требование к работе дизель-генераторной электростанции — параллельная работа агрегатов должна быть устойчивой. Общая устойчивость складывается из двух составляющих:

  • Статическая устойчивость. При небольших возмущениях в сети факторы, которые стремятся не допустить изменения синхронного режима, действуют сильнее, чем факторы, приводящие к возмущениям.
  • Динамическая устойчивость. При значительных отклонениях параметров сети от синхронных (вызванных внешним влиянием) система стремится к прежнему, синхронному состоянию, после окончания действия внешних факторов.

Оба составляющих устойчивой работы очень важны для стабильной работы электростанции. Современные системы синхронизации обычно автоматически отслеживают случаи выпадения из синхронизма агрегатов, производят восстановление режима работы, а если, по каким-то причинам это невозможно, аварийный генератор отключается.

Источник: https://tcip.ru/blog/dizel-generatory/parallelnaya-rabota-sinhronizatsiya-dizel-generatorov.html

Резервируем: как подключить генератор на даче или в частном доме

Не секрет, что концепция частного домостроительства заключается в максимальной энергонезависимости. Как минимум, каждый владелец загородного жилья заботится о резервном электоснабжении при помощи альтернативных источников. Одним из таковых является бензогенератор. Но проблема, заключается в том, что не все в состоянии правильно задействовать агрегат в системе и делают ошибки, поэтому рассмотрим вопрос подробнее.

Почему знать, как подключить генератор к частному дому через розетку – это лишняя осведомленность

 

Там, где случаи аварийного отключения электроснабжения довольно редки, традиционно принято «подкидывать» кабель от бензогенератора прямо к ближайшему разъему при помощи штепселя. А зачем заморачиваться и обустраивать систему резервного ввода, ведь «рубят свет» только раз в полгода. Примерно такие мысли встречаются у наших соотечественников, которые не оценили по достоинству пословицу «пока гром не грянет, мужик не перекрестится».

Профессиональные электрики рекомендуют совсем не думать на тему, как подключить генератор к дому через розетку, по следующим причинам:

  • Отдельная розеточная группа не в состоянии принять на себя магистральную нагрузку.
  • Отсутствие отдельного автомата в линии включения.
  • Присутствие человеческого фактора, когда пользователь забывает выключить вводной автомат, чем вызывает перегруз и срабатывание защиты агрегата.
  • Возможность «встречки», когда напряжение городской сети при включенном автомате поступает на контакты работающего электрогенератора, чем может вывести его из строя.

И, наконец, последний аргумент – нет смысла пренебрегать безопасностью и комфортной системой эксплуатации узла. Правильней узнать, как подключить генератор на даче или в доме, и организовать или автоматический режим переключения или ручной. Согласитесь, только так все оборудование и электросети гарантированно будут в сохранности.

Что необходимо для реализации проекта

Если еще кто-то думает, что для подсоединения бензогенератора к электросети домостроения нужно прибрести массу оборудования, спешим успокоить – это не так. Конечно, придется определиться с месторасположением агрегата и обустроить его в соответствии с вибро- и шумоизоляционными нормами. Если для этого нужно отдельное помещение, то без цементно-песчаной стяжки не обойтись.

Само собой, речь идет об электрогенераторах мощностью свыше 2 кВт, которые в большинстве случаев монтируются стационарно. Для подсоединения его к домашней сети технический минимум состоит из следующих компонентов:

  1. Отдельный ввод из медного кабеля сечением не менее 4 мм², который прокладывается от вводного устройства до места постановки генераторного агрегата.
  2. Перекидной рубильник в модульном варианте с возможностью фиксации на DIN-рейку 35 мм. Выбор здесь довольно широк, от недорогих TDM-63 до более надежных приборов от Hager или ABB.

Особое внимание следует уделить типу заземления в домостроении, потому что подсоединение бензогенератора в роли резервного источника энергии должно выполняться в соответствии с ПУЭ. Иными словами, перед тем, как подключить генератор к домашней сети, нужно определить систему заземления – TT или TN-C-S.

 

На выходе электрогенератора не помешает установить дифзащиту. Даже если внутренняя разводка выполнена по двухпроводному типу без заземления – это не говорит о том, что генерирующее устройство не нужно заземлять.

Вариант 1: как на даче подключить электрический генератор при помощи реверсивного переключателя

Традиционно нижние контакты реверсивного рубильника используются для отходящей нагрузки. С противоположной стороны на парные контакты подсоединяются отдельные вводы. Переключатель имеет три положения, в среднем – все контакты разомкнуты.

Важно учесть одну деталь – в трехпозиционном переключателе нет электромагнитного или теплового разъединителя, он попросту выключает нагрузку. Исходя из этого, каждый ввод следует дополнительно страховать автоматом, ток срабатывания которого определяется допустимой нагрузкой на линию.

Последовательность включения электрогенератора в схеме с пакетным переключателем

Процесс подключения резервной системы энергоснабжения выполняется в следующей последовательности:

  • Отключить автомат ввода.
  • Установить рукоятку переключателя с городской сети на сеть генераторной установки.
  • Отключить автомат нагрузки.
  • Подсоединить кабель от ручного переключателя к розетке бензогенератора.
  • Запустить агрегат и прогреть его около 2-3 минуты.
  • Дать питание на реверсивный рубильник.
  • Включить автоматы нагрузки.

После появления штатного сетевого питания нужно отключить агрегат от нагрузки в обратной последовательности.

Альтернативное решение

Многие интересуются, как подключить электрический генератор на даче, если не удалось найти достойного перекидного устройства. Его можно сделать самостоятельно из пары двухполюсных однотипных автоматов.

Их монтируют рядом на одном уровне. Один автомат крепится в перевернутом положении так, чтобы все клавиши оказались на одном уровне, их фиксируют стальным штифтом.

Вариант 2: организация автоматического переключения линий

 

Нахождение в труднодоступном месте щитка с ВРУ вызывает некоторый дискомфорт у домовладельца, поэтому есть смысл рассмотреть вариант с автоматическим устройством переключения. Его реализация не сложнее подключения проходного выключателя, нужны только два модульных контактора с соответствующим числом контактных пар, а также парой нормально замкнутых и нормально разомкнутых контактов.

В штатном режиме городская сеть остается на подхвате включенного контактора. Когда на вводе из города электричество пропадет, то контакты отбросит и замкнется пара контактов, которые приведут в действие второй контактор, отвечающий за резервный ввод. Этот контактор включается в цепь до разрыва питающей сети от генераторной установки.

В схеме разумно использовать реле времени, которое позволит подать питание потребителям через 2-3 минуты после пуска бензогенератора. Этот промежуток нужен для прогрева двигателя. Питание резервного контактора должно проходить через нормально замкнутый контакт коммутатора главного ввода.

В случае появления напряжения в городской линии первый контактор опять включится и разомкнет цепь, которая запитывает второй ввод. Конечно, такую схему автоматической можно назвать только с большим натягом, потому что пуск мотора электрогенератора осуществляется под контролем человека. Полностью автоматические системы оправданы при работе с мощными источниками тока.

Вариант 3: как подключить к домашней сети резервный генератор с автозапуском АВР

Приборы для осуществления аварийного электроснабжения в полностью автоматическом режиме предполагают наличие у генерирующего агрегата стартера и системы останова двигателя. Можно и самому организовать подобную систему, но это довольно хлопотно. Таким образом, оправданы два варианта решения вопроса:

  • Комплектный блок управления, который продается вместе с электрогенератором. Перед тем, как подключить резервный генератор к домашней сети, комплект подсоединяется согласно схеме. Он управляет не только запуском и остановкой агрегата, но и регулирует обороты, т.е. выдаваемую мощность.
  • Устройство АВР с компонентами, которые необходимо установить на бензогенератор как дополнительное оборудование для управления стартером и дроссельной заслонкой.

Преимущество таких комплектов состоит в том, что они включают встроенную защиту по току, а также страхуют от утечек и перенапряжений. Пользователю только остается подсоединить провода ввода и потребителей на коммутирующие приборы.

Источник: https://stroimass.com/kak-podklyuchit-generator-k-domu.html

Оставьте комментарий