Как определить активность металла

Металлы

Как определить активность металла

У всех металлов есть общие физические свойства, например блеск и электропроводность, однако в зависимости от химических свойств они делятся на несколько групп. Такие металлы, как калий и натрий, очень активны и мгновенно вступают в реакции с водой и воздухом, в то время как золото вообще не вступает в реакции. На рисунке изображена золотая маска царя Микен (см. статью «Загадочные жители Греции»)

Свойства металлов 

При комнатной температуре (20 °С) все металлы, кроме ртути, пребывают в твердом состоянии и хорошо проводят тепло и электричество. На срезе металлы блестят и не­которые, как железо и никель, обладают магнитными свойствами. Многие металлы пластичны — из них можно делать проволоку — и ковки — им несложно при­дать другую форму.

Благородные металлы

Благородные металлы в земной коре встречаются в чистом виде, а не в составе соединений. К ним относятся медь, се­ребро, золото и платина. Они химически пассивны и с трудом вступают в химические реакции с другими элементами.

Медь — благородный металл. Золото — один из самых инертных элементов. Из-за своей инертности благородные металлы не подвержены коррозии, поэтому из них делают украшения и монеты.

Золото настолько инертно, что древние золотые изделия до сих пор ярко сияют.

Щелочные металлы 

Группу 1 в периодической таблице состав­ляют 6 очень активных металлов, в т.ч. натрий и калий. Они плавятся при сравнительно низкой температуре (темпера­тура плавления калия 64 °С) и настолько мягкие, что их можно резать ножом. Вступая в реакцию с водой, эти металлы образуют щелочной раствор и поэтому называются щелочными. Калий бурно реагирует с водой. При этом выделяется водород, который сгорает сиреневым пламенем.

Щелочноземельные металлы 

Шесть металлов, составляющих 2-ю группу периодической таблицы (в т.ч. магний и кальций), называются щелочноземельными. Эти металлы входят в состав множества минералов.

Так, кальций имеется в кальците, прожилки которого можно обнаружить в известняке и меле. Щелочноземельные металлы менее активны, чем щелочные, они тверже и плавятся при более высокой температуре. Кальций содержится в ракушках, костях и губках.

Магний входит в состав хлорофилла, зеленого пигмента, необходимого для фотосинтеза.

Металлы 3-й и 4-й групп 

Семь металлов этих групп расположены в периодической таблице справа от переходных металлов. Алюминий — один из наименее плотных металлов, поэтому он легкий. А вот свинец очень плотный; из него делают экраны, защищающие от рентгеновских лу­чей. Все эти металлы довольно мягкие и плавятся при относительно низкой тем­пературе. Многие из них используются в сплавах — создаваемых с определенными целями смесях металлов. Велосипеды и самолеты делают из алюминиевых сплавов.

Переходные металлы 

Переходные металлы обладают типично металлическими свойствами. Они прочные, твердые, блестящие и плавятся при высоких температурах. Они менее актив­ны, чем щелочные и щелочноземельные металлы. К ним относятся железо, золото, серебро, хром, никель, медь.

Они все ковкие и широко применяются в промышленности — как в чистом виде, так и в виде сплавов. Около 77% от массы автомобиля составляют металлы, в основном сталь, т.е. сплав железа и углерода (см. статью «Железо, сталь и прочие металлы«). Ступицы колес делают из хромированной стали — для блеска и предохранения от коррозии.

Корпус машины сделан из листовой стали. Стальные бамперы предохраняют автомобиль в случае столкновения.

Ряд активности 

Положение металла в ряду активности показывает, насколь­ко охотно металл вступает в реакции. Чем более активен металл, тем легче он отнимает кислород у менее активных металлов.

Активные металлы трудно выде­лить из соединений, тогда как малоактивные металлы встречаются в чистом виде. Калий и натрий хранят в керосине, так как они моментально вступают в реакции с водой и воздухом. Медь – наименее активный металл из числа недорогих.

Она используется в производстве труб, резервуаров для горячей воды и электрических проводов.

Металлы и пламя 

Некоторые металлы, если поднести их к огню, придают пламени определенный оттенок. По цвету пламени можно определить присутствие в соединении того или иного металла. Для этого крупинку вещества помешают в пламя на конце проволоки из инертной платины.

Соединении натрия окрашивают пламя в желтый цвет, соединения меди — в сине-зеленый, соединении кальции — в красный, и калия — в сиреневый. В состав фейерверков входят разные металлы, сообщающие пламени разные оттенки.

Барий дает зеленый цвет, стронций — красный, натрий — желтый, а медь — сине-зеленый.

Коррозия

Коррозия — это химическая реакция, происходящая при контакте металла с воздухом или водой. Металл взаимодействует с кислородом воздуха, и на его поверхности образуется оксид. Металл теряет блеск и покрывается налетом. Высокоактивные металлы подвергаются коррозии быстрее, чем менее активные.

Рыцари смазывали стальные доспехи маслом или воском, чтобы они не ржавели (сталь содержит много железа). Для предохранения от ржавчины стальной корпус автомобиля покрывают несколькими слоями краски. Некоторые металлы (например, алюминий) покрываются защищающей их плотной оксидной пленкой.

Железо при коррозии образует неплотную пленку оксида, кото­рая при реакции с водой дает ржавчину. Слой ржавчины легко осыпается, и процесс коррозии распространяется вглубь. Для предохранения от коррозии стальные консервные банки покрывают слоем олова — менее активного металла. Крупные сооружения, например мосты, спасает от коррозии краска.

Читайте также  Сдать радиодетали содержащие драгоценные металлы

Движущиеся части машин, например велосипедные цепи, смазывают маслом, чтобы спасти от коррозии.

https://www.youtube.com/watch?v=ZyNX0jGuJ0o

Способ предохранения стали от коррозии путем покрытия слоем цинка называется гальванизацией. Цинк активнее стати, поэтому он «оттягивает» от нее кислород. Даже если цинковый слой поцарапается, кислород воздуха будет быстрее взаимодействовать с цинком, чем с железом.

Для зашиты  судов от коррозии к их корпусам прикрепляют блоки цинка или магния, которые корродируют сами, но защищают судно. Для дополнительной защиты от коррозии стальные листы корпуса автомобилей чисто гальванизируют перед покраской.

С внутренней стороны их иногда покрывают пластиком.

Как открывали металлы 

Вероятно, люди узнали, как получить металлы, случайно, когда металлы выделялись из минералов при нагревании их в печах с древесным углем. Чистый металл выделяется из соединения при реакции восстановления. На таких реакциях основано действие доменных печей. Около 4000 г. до н.э. Шумеры (узнайте больше в статье «Повседневная жизнь Шумеров«) делали золотые, серебряные и медные шлемы и кинжалы.

Раньше всего люди научились обрабатывать медь, зо­лото и серебро, т.е. благородные металлы, поскольку они встречаются в чистом виде. Около 3500 г. до н.э. шумеры научились делать бронзу — сплав меди и олова. Бронза прочнее благородных металлов. Железо было открыто позднее, так как для извлечения его из соединений нужны весьма высокие температуры. На рисунке справа изображены бронзовый топор (500 г. до н.э.

) и шумерская бронзовая чаша.

 До 1735 г. люди знали всего несколько металлов: медь, серебро, золото, железо, ртуть, олово, цинк, висмут, сурьму и свинец. Алюминий был открыт в 1825 г. В наши дни ученые синтезировали ряд новых металлов, облучая в ядерном реакторе атомы урана нейтронами и другими элементарными частицами. Эти элементы нестабильны и очень быстро распадаются.

Источник: http://www.polnaja-jenciklopedija.ru/nauka-i-tehnika/metalli.html

Ряд активности металлов в химии

Все металлы, в зависимости от их окислительно-восстановительной активности объединяют в ряд, который называется электрохимическим рядом напряжения металлов (так как металлы в нем расположены в порядке увеличения стандартных электрохимических потенциалов) или рядом активности металлов:

Li, K, Ва, Ca, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb, H2, Cu, Hg, Ag, Рt, Au

Наиболее химически активные металлы стоят в ряду активности до водорода, причем, чем левее расположен металл, тем он активнее. Металлы, занимающие в ряду активности, место после водорода считаются неактивными.

Алюминий

Алюминий представляет собой серебристо-белого цвета. Основные физические свойства алюминия – легкость, высокая тепло- и электропроводность. В свободном состоянии при пребывании на воздухе алюминий покрывается прочной пленкой оксида Al2O3, которая делает его устойчивым к действию концентрированных кислот.

Алюминий относится к металлам p-семейства. Электронная конфигурация внешнего энергетического уровня – 3s23p1. В своих соединениях алюминий проявляет степень окисления равную «+3».

Алюминий получают электролизом расплава оксида этого элемента:

2Al2O3 = 4Al + 3O2↑

Однако из-за небольшого выхода продукта, чаще используют способ получения алюминия электролизом смеси Na3[AlF6] и Al2O3. Реакция протекает при нагревании до 960С и в присутствии катализаторов – фторидов (AlF3, CaF2 и др.), при этом на выделение алюминия происходит на катоде, а на аноде выделяется кислород.

Алюминий способен взаимодействовать с водой после удаления с его поверхности оксидной пленки (1), взаимодействовать с простыми веществами (кислородом, галогенами, азотом, серой, углеродом) (2-6), кислотами (7) и основаниями (8):

2Al + 6H2O = 2Al(OH)3 +3H2↑ (1)

2Al +3/2O2 = Al2O3 (2)

2Al + 3Cl2 = 2AlCl3 (3)

2Al + N2 = 2AlN (4)

2Al +3S = Al2S3 (5)

4Al + 3C = Al4C3 (6)

2Al + 3H2SO4 = Al2(SO4)3 + 3H2↑ (7)

2Al +2NaOH +3H2O = 2Na[Al(OH)4] + 3H2↑ (8)

Кальций

В свободном виде Ca – серебристо-белый металл. При нахождении на воздухе мгновенно покрывается желтоватой пленкой, которая представляет собой продукты его взаимодействия с составными частями воздуха. Кальций – достаточно твердый металл, имеет кубическую гранецентрированную кристаллическую решетку.

https://www.youtube.com/watch?v=YZvfmcFYe0Q

Электронная конфигурация внешнего энергетического уровня – 4s2. В своих соединениях кальций проявляет степень окисления равную «+2».

Кальций получают электролизом расплавов солей, чаще всего – хлоридов:

CaCl2 = Ca + Cl2↑

Кальций способен растворяются в воде с образованием гидроксидов, проявляющих сильные основные свойства (1), реагировать с кислородом (2), образуя оксиды, взаимодействовать с неметаллами (3 -8), растворяться в кислотах (9):

Ca + H2O = Ca(OH)2 + H2↑ (1)

2Ca + O2 = 2CaO (2)

Ca + Br2 =CaBr2 (3)

3Ca + N2 = Ca3N2 (4)

2Ca + 2C = Ca2C2 (5)

Ca +S = CaS (6)

2Ca + 2P = Ca3P2 (7)

Ca + H2 = CaH2 (8)

Ca + 2HCl = CaCl2 + H2↑ (9)

Железо и его соединения

Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – [Ar]3d 64s2. В своих соединениях железо проявляет степени окисления «+2» и «+3».

Металлическое железо реагирует с водяным паром, образуя смешанный оксид (II, III) Fe3O4:

3Fe + 4H2O(v) ↔ Fe3O4 + 4H2↑

На воздухе железо легко окисляется, особенно в присутствии влаги (ржавеет):

3Fe + 3O2 + 6H2O = 4Fe(OH)3

Как и другие металлы железо вступает в реакции с простыми веществами, например, галогенами (1), растворяется в кислотах (2):

2Fe + Br2 = 2FeBr3 (при нагревании) (1)

Читайте также  Спектральный анализ металлов и сплавов

Fe + 2HCl = FeCl2 + H2↑ (2)

Железо образует целый спектр соединений, поскольку проявляет несколько степеней окисления: гидроксид железа (II), гидроксид железа (III), соли, оксиды и т.д. Так, гидроксид железа (II) можно получить при действии растворов щелочей на соли железа (II) без доступа воздуха:

FeSO4 + 2NaOH = Fe(OH)2↓ + Na2SO4

Гидроксид железа (II) растворим в кислотах и окисляется до гидроксида железа (III) в присутствии кислорода.

Соли железа (II) проявляют свойства восстановителей и превращаются в соединения железа (III).

Оксид железа (III) нельзя получить по реакции горения железа в кислороде, для его получения необходимо сжигать сульфиды железа или прокаливать другие соли железа:

4FeS2 + 11O2 = 2Fe2O3 +8SO2↑

2FeSO4 = Fe2O3 + SO2↑ + 3H2O

Соединения железа (III) проявляют слабые окислительные свойства и способны вступать в ОВР с сильными восстановителями:

2FeCl3 + H2S = Fe(OH)3↓ + 3NaCl

Производство чугуна и стали

Стали и чугуны – сплавы железа с углеродом, причем содержание углерода в стали до 2%, а в чугуне 2-4%. Стали и чугуны содержат легирующие добавки: стали– Cr, V, Ni, а чугун – Si.

Выделяют различные типы сталей, так, по назначению выделяют конструкционные, нержавеющие, инструментальные, жаропрочные и криогенные стали. По химическому составу выделяют углеродистые (низко-, средне- и высокоуглеродистые) и легированные (низко-, средне- и высоколегированные). В зависимости от структуры выделяют аустенитные, ферритные, мартенситные, перлитные и бейнитные стали.

Стали нашли применение во многих отраслях народного хозяйства, таких как строительная, химическая, нефтехимическая, охрана окружающей среды, транспортная энергетическая и другие отрасли промышленности.

В зависимости от формы содержания углерода в чугуне — цементит или графит, а также их количества различают несколько типов чугуна: белый (светлый цвет излома из-за присутствия углерода в форме цементита), серый (серый цвет излома из-за присутствия углерода в форме графита), ковкий и жаропрочный. Чугуны очень хрупкие сплавы.

Области применения чугунов обширны – из чугуна изготавливают художественные украшения (ограды, ворота), корпусные детали, сантехническое оборудование, предметы быта (сковороды), его используют в автомобильной промышленности.

Примеры решения задач

Источник: http://ru.solverbook.com/spravochnik/ximiya/9-klass/ryad-aktivnosti-metallov/

Какой самый активный металл?

Если вы хотя бы немного помните школьный курс физики, то легко вспомните, что самый активный металл это литий. Этот факт не вызывает удивления, до тех пор, пока вы не пытаетесь разобраться подробнее в этом вопросе. Правда, сложно представить себе ситуацию, в которой это вам потребуется такая информацию, но ради праздного интереса можно попробовать.

https://www.youtube.com/watch?v=XeCPUOHSjg4

К примеру, что такое активность металла? Способность к быстрой и полной реакции с другими химическими элементами? Возможно. Тогда литий, хоть и будет одним из наиболее активных металлов, но явно не чемпионом. Но об этом дальше.

А вот если внести незначительное уточнение, сказать не «самый активный металл», а «самый электрохимически активный металл», тогда литий займет законное первое место.

Литий

В переводе с греческого «литий» означает «камень». Но это и не удивительно, ведь обнаружил его шведский химик Арфведсон как раз в камне, в минерале петалите, где кроме всего прочего, содержался и этот металл.

С этого момента и началось его изучение. А работать есть над чем. К примеру, его плотность в несколько раз меньше, чем у алюминия. В воде он, конечно же, потонет, но зато в керосине будет уверенно плавать.

При нормальных условиях литий – это мягкий, серебристого цвета металл. В ряду Бекетова (ряд электрохимической активности) литий занимает почетное первое место, опередив даже все остальные щелочные металлы. Это означает, что при химической реакции он будет вытеснять другие металлы, занимая вакантное место в соединениях. Именно это и определяет все остальные его свойства.

К примеру, он абсолютно необходим для нормальной работы организма человека, хотя и в мизерных дозах. Повышенная концентрация может стать причиной отравления, пониженная – психической нестабильности.

Интересно, что известный напиток 7Up раньше содержал литий и позиционировался как средство от похмелья. Возможно, действительно помогал.

Цезий

Но если избавится от навязчивого уточнения «электрохимически», оставив просто «активный металл», то победителем можно назвать цезий.

Как известно, активность веществ в таблице Менделеева увеличивается справа налево и сверху вниз. Дело в том, что в веществах, которые находятся в первой группе (первый столбец) на внешнем слое вращается единственный одинокий электрон. Избавиться атому от него просто, что и происходит практически в любой реакции. Если бы их там было два, как у элементов из второй группы, то это бы потребовало уже больше времени, три — ещё больше, и так далее.

Но и в первой группе вещества не одинаково активны. Чем ниже находится вещество, тем больше диаметр его атома, и тем дальше от ядра вращается этот единственный свободный электрон. А это значит, что притяжение ядра на него воздействует слабее и оторваться ему легче. Всем этим условиям как раз и соответствует цезий.

Этот металл стал первым, который открыли с помощью спектроскопа. Ученые исследовали состав минеральной воды из целебного источника и увидели на спектроскопе ярко-голубую полосу, соответствующую неизвестному ранее элементу. Из-за этого цезий и получил свое название. Перевести его на русский можно как «небесно-голубой».

Из всех чистых металлов, которые можно добыть в значимых количествах, цезий обладает наибольшей химической активностью, а также множеством других интересных свойств. К примеру, он может расплавиться в руках человека. Но для этого он должен быть помещен в запаянную стеклянную капсулу, наполненную чистым аргоном, ведь в противном случае он просто загорится от контакта с воздухом. Этот металл нашел свое применение в самых разных областях: от медицины и до оптики.

Читайте также  Фигурки из металла своими руками

Франций

А если не останавливаться на цезии и спуститься ещё ниже, то мы попадем на франций. Он сохраняет все свойства и особенности цезия, но выводит их на качественно новый уровень, ведь у него электронных орбит ещё больше, а значит и тот самый одинокий электрон находится ещё дальше от центра.

Долгое время он был теоретически предсказан и даже описан, но найти его или пролучит все не удавалось, что тоже не удивительно, ведь в природе он содержится в мизерных количествах (меньше – только астата). А даже если его получить, то из-за высокой радиоактивности и быстрого периода полураспада он остается крайне нестабильным.

Интересно, что во франции воплотилась мечта средневековых алхимиков, только наоборот. Они мечтали получать золото из других веществ, а здесь для получения используют золото, которое после бомбардировки электронами превращается в франций. Но даже так его можно получить в ничтожно малых количествах, недостаточных даже для тщательного изучения.

https://www.youtube.com/watch?v=IDF84kfsHJM

Таким образом, именно франций остается самым активным из металлов, далеко опережая все остальные. Конкуренцию ему может составить только цезий, да и то, исключительно за счет более весомого количества. Даже самый активный неметалл, фтор, значительно уступает ему.

Источник: http://megatopof.ru/post/kakoi-samyi-aktivnyi-metall.html

Электрохимический ряд напряжений металлов (ЭРН)

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H Cu Hg Ag Pt Au

Ряд напряжений металлов широко используется в неорганической химии. В частности, результаты многих реакций и даже возможность их осуществления зависят от положения некоторого металла в ЭРН. Обсудим этот вопрос подробнее.

Взаимодействие металлов с кислотами

Металлы, находящиеся в ряду напряжений левее водорода, реагируют с кислотами — неокислителями. Металлы, расположенные в ЭРН правее Н, взаимодействуют только с кислотами — окислителями (в частности, с HNO3 и концентрированной H2SO4).

Пример 1. Цинк расположен в ЭРН левее водорода, следовательно, способен реагировать практически со всеми кислотами:

Zn + 2HCl = ZnCl2 + H2

Zn + H2SO4 = ZnSO4 + H2

Пример 2. Медь находится в ЭРН правее Н; данный металл не реагирует с «обычными» кислотами (HCl, H3PO4, HBr, органические кислоты), однако вступает во взаимодействие с кислотами-окислителями (азотная, концентрированная серная):

Сu + 2HCl ≠

Cu + 4HNO3(конц.) = Cu(NO3)2 + 2NO2 + 2H2O

Cu + 2H2SO4(конц.) = CuSO4 + SO2 + 2H2O

Обращаю внимание на важный момент: при взаимодействии металлов с кислотами-окислителями выделяется не водород, а некоторые другие соединения. Подробнее об этом можно почитать здесь!

Взаимодействие металлов с водой

Металлы, расположенные в ряду напряжений левее Mg, легко реагируют с водой уже при комнатной температуре с выделением водорода и образованием раствора щелочи.

Пример 3. Натрий, калий, кальций легко растворяются в воде с образованием раствора щелочи:

2Na + 2H2O = 2NaOH + H2

2K + 2H2O = 2KOH + H2

Ca + 2H2O = Ca(OH)2 + H2

Металлы, расположенные в ряду напряжений от водорода до магния (включительно), в ряде случаев взаимодействуют с водой, но реакции требуют специфических условий.

Например, алюминий и магний начинают взаимодействие с Н2О только после удаления оксидной пленки с поверхности металла. Железо не реагирует с водой при комнатной температуре, но взаимодействует с парами воды.

Кобальт, никель, олово, свинец практически не взаимодействуют с H2O не только при комнатной температуре, но и при нагревании.

Металлы, расположенные в правой части ЭРН (серебро, золото, платина) не реагируют с водой ни при каких условиях.

Взаимодействие металлов с водными растворами солей

Речь пойдет о реакциях следующего типа:

металл (*) + соль металла (**) = металл (**) + соль металла (*)

Хотелось бы подчеркнуть, что звездочки обозначают в данном случае не степень окисления, не валентность металла, а просто позволяют различить металл № 1 и металл № 2.

Для осуществления подобной реакции необходимо одновременное выполнение трех условий:

  1. соли, участвующие в процессе, должны растворяться в воде (это легко проверить, пользуясь таблицей растворимости);
  2. металл (*) должен находиться в ряду напряжений левее металла (**);
  3. металл (*) не должен реагировать с водой (что тоже легко проверяется по ЭРН).

Пример 4. Рассмотрим несколько реакций:

Zn + CuSO4 = ZnSO4 + Cu

Fe + CuS ≠

Pb + FeSO4 ≠

K + Ni(NO3)2 ≠

Первая реакция легко осуществима, все перечисленные выше условия выполнены: сульфат меди растворим в воде, цинк находится в ЭРН левее меди, Zn не реагирует с водой.

Вторая реакция невозможна, т. к. не выполнено первое условие (сульфид меди (II) практически не растворяется в воде). Третья реакция неосуществима, поскольку свинец — менее активный металл, нежели железо (находится правее в ЭРН). Наконец, четвертый процесс НЕ приведет к осаждению никеля, поскольку калий реагирует с водой; образовавшийся гидроксид калия может вступить в реакцию с раствором соли, но это уже совершенно другой процесс.

Процесс термического распада нитратов

Напомню, что нитраты — это соли азотной кислоты. Все нитраты разлагаются при нагревании, но вот состав продуктов разложения может быть разным. Состав определяется положением металла в ряду напряжений.

https://www.youtube.com/watch?v=wa2GZsaSN1c

Нитраты металлов, расположенных в ЭРН левее магния, при нагревании образуют соответствующий нитрит и кислород:

2KNO3 = 2KNO2 + O2

В ходе термического разложения нитратов металлов, расположенных в ряду напряжений от Mg до Cu включительно, образуются оксид металла, NO2 и кислород:

2Cu(NO3)2 = 2CuO + 4NO2 + O2

Наконец, при разложении нитратов наименее активных металлов (расположенных в ЭРН правее меди) образуются металл, диоксид азота и кислород:

Hg(NO3)2 = Hg + 2NO2 + O2

Источник: http://www.repetitor2000.ru/rjad_naprjazhenij_metallov.html