Фазорезка принцип работы

Содержание

Регуляторы скорости вращения вентиляторов

Фазорезка принцип работы открыть разделы

Способы регулирования скорости вращения вентиляторных двигателей

Ступенчатые регуляторы частоты вращения с использованием автотрансформаторов

Тиристорные (симисторные) регуляторы скорости вращения

Электронный автотрансформатор

Сравнение регуляторов частоты вращения вентилятора

При использовании вентиляторов часто возникает необходимость регулирования частоты вращения. В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума, настроить необходимую производительность притока или вытяжки.

На настоящий момент широко распространены способы регулирования частоты вращения при помощи изменения электрических параметров питания вентилятора:

  • изменение напряжения питания двигателя;
  • изменение частоты питающего напряжения.

Регулирование напряжением осуществляется понижением питающего напряжения вентилятора. Преимуществом регулирования частоты вращения вентилятора изменением напряжения питания в относительно невысокой стоимости устройств, работающих по такому принципу. Известны следующие виды устройств для регулирования оборотов вентилятора при помощи понижения напряжения питания:

  • Ступенчатые регуляторы частоты вращения с использованием автотрансформаторов;
  • Тиристорные регуляторы скорости вращения;
  • Электронные автотрансформаторы.

Регулирование скорости понижением напряжения связано с изменением, так называемого, скольжения двигателя. При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя. При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности. Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

Регулирование вентилятора частотой питающего тока возможно осуществить при помощи частотного привода. У частотных приводов много преимуществ, но есть один существенный недостаток – их цена. Кроме того, они громоздки. Используемые в быту и для коммерческого использования вентиляторы обычно имеют невысокую цену. Вряд ли покупатель бытового вентилятора согласиться приобрести для него регулятор стоимостью, в десятки раз превышающую стоимость самого вентилятора. Поэтому в этой статье мы частотные приводы рассматривать не будем.

Ступенчатые регуляторы частоты вращения с использованием автотрансформаторов

Работа ступенчатых регуляторов скорости основана на использовании автотрансформаторов. Управление данными регуляторами осуществляется путем ступенчатого изменения напряжения питания. Регулирование скорости осуществляется вручную. Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков.

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

[su_box style="default" title="" box_color="#F27405" radius="0"]

К преимуществам использования ступенчатых автотрансформаторов можно отнести чистую синусоиду на выходе и высокую перегрузочную способность. К недостаткам  большую массу и габариты.

[/su_box]

Примером регулятора частоты вращения со встроенным ступенчатым автотрансформатором является O’Erre RG 5 AR (на изображении выше). Данный регулятор позволяет включать вентилятор на 5-ти различных скоростях. Регулятор частоты вращения O’Erre RG 5 AR может управлять реверсивными вентиляторами. Также на него можно завести управление светом. Максимальная мощность подключаемого вентилятора 80 Вт. Регулятор RG 5 AR оснащен плавким предохранителем с номиналом 2 А-220 В.

Тиристорные (симисторные) регуляторы скорости вращения

В тиристорных регуляторах вращения используют принцип фазового управления, когда изменяется момент включения тиристоров относительно перехода сетевого напряжения через ноль. Для простоты обычно говорят, что изменяется выходное напряжение.

https://www.youtube.com/watch?v=9-xIcFSsnG8

В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) другими словами симистор. Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения. Таким образом, изменяется среднеквадратичное значение напряжения.

Есть ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры), однако для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

  • Установлен нижний порог напряжения подаваемого на двигатель вентилятора
  • Мощность симистора выбирается так, чтобы его максимальный рабочий ток превышал рабочий ток вентилятора не менее, чем в 4 раза (при резистивной нагрузке в 2 А достаточно взять симистор также на 2 А).
  • Предохранитель подбирается исходя из мощности электродвигателя (обычно максимальный ток предохранителя должен быть на 20% больше рабочего тока двигателя).
  • Для более правильного формирования синусоиды установлен дополнительный фазосдвигающий демпфирующий конденсатор.
  • Для уменьшения сетевых помех используется дополнительный конденсатор помехоподавления

К достоинствам тиристорных регуляторов можно отнести их малую стоимость, низкую массу и размеры. К недостаткам — использование для двигателей небольшой мощности, при работе возможен шум, треск, рывки двигателя, при использовании симисторов на двигатель попадает постоянное напряжение.  

Тиристорные (симисторные) регуляторы частоты вращения применяются с вентиляторами, имеющими однофазные двигатели со встроенной автоматической термозащитой. Электродвигатель должен быть спроектирован для работы с регуляторами подобного типа.

Примером симисторого регулятора частоты вращения вентилятора служит Soler & Palau Reb-1N. Этот регулятор выпускается как для скрытой установки в стандартный подрозетник, так и для открытого монтажа. Регулятор имеет встроенный плавкий предохранитель. Возможна регулировка минимальной скорости вентилятора. Включение/выключение через колесо регулировки. Максимальная мощность подключаемого вентилятора 220 Вт.

Электронный автотрансформатор

Электронный автотрансформатор – это транзисторный регулятор напряжения. Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

Выходной каскад такой же, как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

Плюсы электронного автотрансформатора заключаются в его небольших габаритах и массе, невысокой стоимости, чистой синусоиде на выходе и отсутствием гула на низких оборотах.

Недостатком можно назвать небольшое расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора).

Электронный автотрансформатор SB033 выполнен для установки на DIN-рейку. Регулятор имеет регулировку минимальной скорости вращения вентилятора. Работой регулятора можно управлять сигналом 0-10 В. Регулятор SB033 имеет реле статуса работы регулятора для подключения привода воздушной заслонки или калорифера. Светодиод на передней панели отображает статус работы или ошибки регулятора. Возможно подключение к SB033 ручки управления, которая устанавливается в стандартный подрозетник.

Читайте также  Принцип действия буровой установки

Сравнение регуляторов частоты вращения вентилятора

Наименование  O’Erre RG 5 AR Soler & Palau Reb-1N SB033
Принцип работы Ступенчатый автотрансформатор Симисторный регулятор Электронный автотрансформатор
Регулировка оборотов 5 скоростей Плавная Плавная
Мощность, Вт 80 220 220
Синусоида чистая рваная чистая
Способ установки Открытая Скрытая/открытая На DIN-рейку
Подключаемый вентилятор Любой асинхронный Асинхронный, со встроенной термозащитой, должен быть спроектирован для работы с симисторными регуляторами Любой асинхронный
Дополнительные возможности Возможно подключение реверсивного вентилятора, возможность включения света Регулировка минимальных оборотов, вкл/выкл через колесо регулировки оборотов Возможность управления 0-10 В, реле статуса работы, светодиодная индикация статусов работы и ошибок, возможно подключения ручки управления для установки в стандартный подрозетник
Достоинства Высокая перегрузочная способность, возможность подключать несколько вентиляторов к одному регулятору Малая стоимость, малый размер Малый размер, экономичная работа, наибольшая долговечность вентилятора при использовании с электронным автотрансформатором по сравнению с другими регуляторами
Недостатки При регулировании греется – отсюда потери электричества на нагрев Шум на малых оборотах

Источник: teplo-spb.ru

Ключевые слова: регуляторы частоты вращения вентилятора, вентиляторы

Источник: https://teplo-spb.ru/stati/kak-vybrat/regulyatory-skorosti-vrashcheniya-ventilyatorov.html

Разновидности регуляторов скорости вращения вентиляторов

Фазорезка принцип работы

Асинхронные двигатели переменного тока довольно часто используются в самых различных целях как в бытовой, так и профессиональной жизни человека. Они применяются в системах вентиляции, для управления различными механизмами и прочее. Если пересмотреть даже самое простое жилье, то найдется несколько таких устройств:

  • Способы регулирования скорости вращения асинхронного двигателя
  • Электронные схемы управления скоростью вращения асинхронными двигателями
  • Симисторные схемы
  • Тиристорный регулятор скоростью вращения вентилятора
  • Транзисторные схемы
  • Купить или сделать своими руками?
  • Подключение регулятора скорости вращения вентилятора
  • Трехфазные вентиляторы

  • Газовые котлы и нагреватели. В конструкции современных котлов имеются вентиляторы турбинного типа и помпы для прокачки воды с питанием от сети 220 В.
  • Холодильники и морозильники. Компрессор бытовой холодильной камеры представляет собой асинхронный двигатель, имеющий 2 обмотки: пусковую и рабочую.
  • Системы вентилирования помещений. Асинхронные двигателя отлично работают в качестве приточно-вытяжных вентиляторов, обеспечивая эффективный воздухообмен внутри помещений, что позволяет поддерживать оптимальный микроклимат и, соответственно, здоровье проживающих в нем людей.

Сфер использования асинхронных двигателей много, но довольно часто требуется обеспечить плавное регулирование оборотов двигателя. В частности, всевозможные бытовые вентиляторы как мобильного типа, так и встраиваемые. Не всегда требуется максимальная мощность воздухообмена. Во многих случаях необходимо уменьшить частоту вращения двигателя, снизив шум и интенсивность движения воздушного потока. Но как организовать управление скоростью вращения двигателя, чтобы обеспечить необходимые режимы работы и интенсивность воздухообмена?

Способы регулирования скорости вращения асинхронного двигателя

Сегодня можно купить регулятор скорости вращения вентилятора нескольких типов в зависимости от конструкции или способа регулирования. Выбор конкретного устройства зависит от основных параметров системы, ее функциональных характеристик. Есть много практических схем регуляторов, основанных на различных принципах управления:

Регулирование напряжением – принцип регулирования оборотов основан на изменении питающего напряжения с определенного уровня до максимума. Нижний порог зависит от характеристик самого двигателя, его конструкции и параметров обмоток.

Этот режим является более простым в реализации, для чего можно использовать автотрансформаторы, симисторы или транзисторные схемы с регулированием напряжения. К нюансам работы подобных схем относится то, что двигатель, кроме скорости вращения, теряет и часть своей мощности.

Кроме этого, существенно нагреваются обмотки двигателя, что говорит не о снижении мощности, а о ее подавлении на компонентах схемы, поэтому и об экономичности этих решений говорить не стоит.

Частотные регуляторы – самый эффективный метод управления скоростью вращения, позволяющий сохранять момент двигателя. Также частотный принцип изменения оборотов может обеспечить со снижением скорости вращения и экономию мощности, поэтому такая схема является более эффективной. Но из-за сложности реализации конструкции стоимость аппаратуры становится довольно высокой. По этой причине многие предпочитают использовать более простые устройства с регулированием напряжения.

https://www.youtube.com/watch?v=MjlSxTRTqz4

Диммеры или схемы с автоматическим включением вращения. Представляют собой устройства, изготовленные на фотоэлементах или на звуковых датчиках, которые включат вентилятор по хлопку или по появлению объекта в зоне видимости сенсоров. Такие устройства актуально использовать в туалете, когда постоянно забываешь выключать свет.

Трансформаторные системы регулирования скорости вращения двигателей

На регулятор скорости вращения вентилятора 220в схема достаточно проста. Ступенчатое изменение осуществляется при помощи автотрансформаторов с дополнительными обмотками. Количество ступеней может быть любым, что зависит от плавности и дискретности переключения режимов. Трансформаторные устройства регулирования являются достаточно надежными и практичными.

Но сложность заключается в том, что переключение ступеней обычно выполняется механическим способом посредством 5-ступенчатого переключателя. В более дорогих устройствах применен принцип ступенчатого управления, но с использованием электронных ключей. Благодаря отсутствию скользящих контактов исключается вероятность искрения и прогорания контактных площадок на больших мощностях. Плюс ко всему осуществляется полностью беззвучное переключение между режимами.

К нюансам подобных устройств следует отнести:

  • Большие габариты – используемый трансформатор обычно имеет существенный вес, даже при выполнении регулирования скорости оборотов небольшого по размерам и мощности вентилятора.
  • Сложность изготовления системы регулирования для более мощных двигателей. При использовании мощных асинхронных моторов габариты автотрансформатора существенно увеличиваются, что делает систему регулирования тяжелой и неудобной.
  • Стационарность. Трансформаторные системы в основном являются монтируемыми на месте и непереносными, что исключает возможность мобильности.

Электронные схемы управления скоростью вращения асинхронными двигателями

Существует много вариантов реализации электронных систем регулирования угловой скоростью и все они имеют свои особенности. Отличительной чертой всех является сложность реализации, но при этом стоимость меньше, чем трансформаторных систем.

На практике используются следующие разновидности схем управления оборотами:

  • симисторные устройства;
  • тиристорные схемы;
  • транзисторные аппараты.

Симисторные схемы

Симисторные устройства регулирования – наиболее простые в реализации и довольно практичные решения. Для регулирования угла отпирания симисторов используется динистор, что сокращает количество используемых компонентов для реализации управления.

Благодаря способности компонента проводить ток в двух направлениях, обеспечивая тем самым регулирование переменного напряжения. А это, по сути, и является фактором дешевизны, простоты устройств. Регуляторы могут быть реализованы в небольших корпусах, непосредственно вместе с рычагами и переключателями. Довольно часто такие схемы исполняются в виде стандартных выключателей, только вместо клавиши-качельки применен вращающийся регулятор.

Симисторные схемы позволяют обеспечивать плавное регулирование скорости, но за счет изменения входного напряжения, а не частоты, КПД оказывается невысоким. Невзирая на это, многие производители бытовой техники предпочитают именно такие схемы, потому что они являются более дешевыми в исполнении. К тому же с их помощью можно выполнять регулирование оборотов мощных вентиляторов.

Тиристорный регулятор скоростью вращения вентилятора

Тиристорный регулятор скорости вращения вентилятора по принципу работы сход с симисторными устройствами, но он более детальный. Для управления асинхронным двигателем необходимо использовать либо 2 тиристора, либо мощный выпрямительный мост и 1 тиристор, не учитывая схему отпирания его посредством сдвига фазы. Стоимость и сложность реализации устройства управления выше и сложнее, но при этом она является более доступной, потому что силовых компонентов можно найти много в старой советской аппаратуре.

Транзисторные схемы

Они могут осуществлять как изменение напряжения, так и частоты управления скорости вращения вентилятора. Особой разницы в схеме реализации замечено явно не будет, потому что изготовить генератор импульсов и обеспечить ключевой режим работы транзистора не так уж и сложно, но для обеспечения необходимой надежности работы аппарата лучше использовать IGBT или высококачественные полевые транзисторы с изолированным затвором и диодом Шоттки. Стоимость таких компонентов будет высокая, не учитывая сложность программы управления работой транзисторов.

Читайте также  Лейденская банка принцип работы

Купить или сделать своими руками?

Любые из представленных вариантов устройств всегда можно купить, а при желании сделать своими руками. Но существует такой фактор, как целесообразность, потому что качественные схемы найти сложно, а стоимость готовых устройств меньше, чем если бы вы его изготовили своими руками.

https://www.youtube.com/watch?v=efWTlXRmw6s

Более того, сегодня купить регулятор скорости вращения вентилятора на 220 В можно на любую мощность, но стоит понимать, что использование диммера для автоматического включения освещения не целесообразно, так как он не вытянет по току нагрузки.

Если все же вы решили купить диммер для вентилятора, то на рынке вы найдете массу предложений от различных производителей. Притом устройства изготавливаются на различную мощность. Но в основном эти аппараты рассчитаны на небольшие двигатели, устанавливаемые в вентиляции санузлов и кухонь.

Подключение регулятора скорости вращения вентилятора

Подключение регулятора скорости вентилятора осуществляется достаточно просто. Каждый производитель предусматривает на корпусе аппарата схему, в которой четко прописаны выводы, куда необходимо подавать фазу, ноль и подключать сам двигатель. Фактор ошибки минимален, поэтому не придется обращаться к услугам квалифицированных электриков.

Трехфазные вентиляторы

Больше осложнений возникнет с трехфазными вентиляторами, потому что управление необходимо организовать по всем 3 проводам. Здесь можно также использовать как изменение входного напряжения, так и частоты. В любом случае более качественным и энергоэффективным является именно частотный метод. Поэтому для подключения трехфазного вентилятора лучше покупать готовые преобразователи.

Источник: https://remontoni.guru/sistemy-ventilyatsii/raznovidnosti-regulyatorov-skorosti-vrashheniya-ventilyatorov.html

Фазорезка принцип работы — Все об электричестве

Фазорезка принцип работы

Фазометром принято именовать устройство электроизмерительной серии, в функции которого входит измерение угла сдвига фаз относительно пары электрических колебаний с постоянной частотой. Например, с помощью такого устройства можно определить угол, показывающий сдвиг фаз в сети напряжения трёхфазного типа. Это его основная область применения. В этой статье мы рассмотрим устройство и принцип работы фазометра, а также правила пользования данным прибором.

Кратко о фазометре

Во время включения устройства в цепь измерения, его подсоединяют одновременно к токовым цепям и цепям напряжения. Если же необходимо работать с сетями, имеющими три фазы напряжения, то выполняется подключение устройства одновременно ко всем этим фазам по напряжению. Подключение по току выполняется ко вторичным обмоткам трансформатора.

В приборе используется упрощённая схема подключения. Поэтому несложно будет разобраться самому с назначением фазометра. Подключение по току выполняется по двум фазам, поэтому третья фаза определяется на основе сложения векторов лишь пары токов (имеется в виду измеряемые фазы). Также назначение фазометра заключается в измерении коэффициента мощности. Этот прибор на простом языке именуется ещё как косинусфиметром.

На данный момент встречается два вида фазометров, область применения которых состоит в определении коэффициента мощности. Это цифровой и электродинамический прибор. Рассмотрим их более подробно.

Электродинамический

Электродинамический фазометр ещё часто именуется электромагнитным. В основе конструкции этого вида измерителя лежит цепь простейшего типа с механизмом логометрического направления, который позволяет проводить работы по измерению сдвига фаз.

В этом фазометре присутствует пара рамок, жёстко соединённых друг с другом. Между ними существует острый угол, равный 60 градусам.

[su_box style="default" title="" box_color="#BF0404" radius="0"]

Рамки устанавливаются на осях, которые закреплены в опорах, поэтому противодействующий момент механического характера отсутствует в устройстве.

[/su_box]

Есть определённые условия, задавать которые возможно только при помощи сдвига фаз токов именно в цепях таких рамок. Подвижный компонент фазометра проворачивается на величину угла, равную углу, который характеризует показатель сдвига фаз. Шкала линейного типа на приборе даёт возможность фиксации результата проведённого измерения.

https://www.youtube.com/watch?v=6oa-kTrOGo4

Рассмотрим принцип работы электродинамического фазометра. В таком устройстве есть катушка неподвижного типа с током и пара катушек в подвижном виде. В каждой из катушек подвижного типа протекают свои токи, создающие магнитные потоки в неподвижной и в подвижных катушках. Поэтому можно предположить, что потоки катушек, которые взаимодействуют, порождают пару вращающихся моментов.

Величины этих моментов во многом находятся в прямой зависимости от расположения пары катушек относительно друг друга, а также угла, на который поворачиваются подвижные компоненты фазометра. Эти моменты направлены в разные стороны, противоположные друг другу. Средние величины данных моментов находятся в зависимости от токов, которые текут в подвижных катушках, и от тока в неподвижной катушке.

Есть зависимость также от конструкции катушек и от углов сдвига фаз между катушками.

[su_quote]

Таким образом, подвижная составляющая фазометра будет проворачиваться под работой этих моментов, пока не получится состояние равновесия, которое будет вызвано равенством самих моментов по итогам поворота. Сама же шкала такого прибора может иметь градацию в системе коэффициентов мощности, что будет удобно для проведения ряда измерений.

[/su_quote]

Минусом электродинамических фазометров в основном является прямая зависимость получаемых показаний от величины частоты. Кроме этого отмечается и большая мощность потребления от источника, который подвергается исследованию

Цифровой

Данный тип фазометра изготавливается несколькими способами. К примеру, фазометр компенсационного типа имеет одну из самых высоких степеней точности, несмотря на то, что выполняется в ручном виде. Принцип действия компенсационного фазометра совсем другой. В таком приборе имеется пара напряжений синусоидального типа. При этом назначение состоит в определении именно фазового сдвига между ними.

Первоначально напряжение подаётся на так называемый фазовращатель, управляемый специальным кодом непосредственно с управляющего устройства. Сдвиг между фазами будет изменяться постепенно, пока не достигнет состояния синфазности. Во время подстройки знак сдвига этих фаз определяется при помощи детектора фазочувствительного типа.

Выходной сигнал подается непосредственно с этого детектора на управляющее устройство. Алгоритм управления реализуется непосредственно методом кодирования импульсов. После уравновешивания входной код фазовращателя покажет величину сдвига между фазами. В этом есть его основной принцип работы.

[su_box style="default" title="" box_color="#475904" radius="0"]

На сегодняшний день цифровые фазометры используют в своей работе принцип, основанный на дискретном счёте. Такой метод работает в двух этапах. Первоначально происходит процесс, связанный с преобразованием сдвига фаз в показатель сигнала, имеющего определённую длительность.

[/su_box]

Потом происходит изменение самой длины данного импульса при помощи дискретного счёта. Данное устройство в своём составе имеет преобразователь для сдвига фаз в импульс, селектор временного типа, формирователь дискретных импульсов, а также счётчик и устройство управления.

Важно знать, что цифровые фазометры имеют меньшую погрешность измерений, т.к. вычисления проводятся за счет несколько периодов.

Инструкция по эксплуатации

Лучшим пособием, объясняющим как пользоваться фазометром, является его инструкция по эксплуатации, которая должна обязательно входить в комплектацию. Перед началом работы необходимо выполнить ряд последовательных действий. Важно первым делом убедиться, что диапазон частот соответствует метрологическим характеристикам, а также что внешние условия соответствуют рабочим. После этого уже можно собирать схему.

Итак, эксплуатация фазометра должна осуществляться в следующей последовательности:

  1. Первоначально необходимо внимательно ознакомится с инструкцией по эксплуатации, прилагаемой к прибору, где можно узнать о его назначении и правилах пользования.
  2. При помощи корректора устанавливается стрелка на отметке нулевого значения.
  3. Нужно посмотреть, чтобы все кнопки были в положении отжатого типа.
  4. Пробники на входе подключите к соответствующим разъёмам.
  5. Теперь необходимо включить кнопку сети. В это момент должен загореться специальный индикатор.
  6. Далее не следует сразу приступать к измерениям, так как прибору необходимо время для прогрева. Примерно на данную процедуру понадобиться четверть часа.
  7. Теперь находим напряжение сигнала со стороны входа.
  8. Нажимаем одну из кнопок в зависимости от нужного напряжения и устанавливаем необходимый диапазон частот.
  9. После этого нажимаем «>00
Читайте также  Двуханодный стабилитрон принцип работы

Источник: https://samelectrik.ru/chto-takoe-fazometr.html

Фазы и механизм газораспределения — как это работает и на что влияет

Термин «фаза» означает часть, этап или ступень какого-то процесса. Поэтому впускная и выпускная фазы газораспределения – часть полного цикла работы двигателя внутреннего сгорания. Прочитав статью, вы узнаете, что происходит во время фаз, каким образом двигатель регулирует их и на что влияют фазы газораспределения.

Как работает двигатель внутреннего сгорания

Воспламенение топливовоздушной смеси в цилиндре двигателя приводит к выделению выхлопных газов и увеличению температуры. Во время такта сжатия поршень движется к верхней мертвой точке (ВМТ) сжимая топливовоздушную смесь или воздух (дизельный двигатель).

Воспламенение происходит незадолго до ВМТ. В бензиновом двигателе топливовоздушную смесь воспламеняет искра свечи зажигания. В дизельном моторе в раскаленный от сжатия воздух впрыскивают распыленное топливо. Когда поршень приближается к нижней мертвой точке (НМТ), наступает выпускная фаза газораспределения.

https://www.youtube.com/watch?v=wY8GQaKvE1Q

Выпускной клапан открывается и поднимающийся к ВМТ поршень выдавливает из цилиндра продукты горения топливовоздушной смеси. Когда поршень подходит к ВМТ заканчивается фаза выпуска и начинается фаза впуска. Поршень движется в ВМТ, в цилиндре возникает разряжение, благодаря которому воздух засасывает внутрь камеры сгорания.

После достижения ВМТ фаза впуска завершается и начинается такт сжатия.

Устройство механизма газораспределения

Газораспределительный механизм (ГРМ) состоит из:

  • одного или двух кулачковых распределительных валов, на каждый из которых установлена своя шестерня;
  • шестерни коленчатого вала;
  • цепного или ременного привода.

Число зубьев шестерни распределительного вала всегда в 2 раза больше, чем у шестерни коленчатого вала.

Благодаря этому за два оборота коленчатого вала происходит лишь один оборот распределительного вала. Это позволяет открывать и закрывать клапаны головки блока цилиндров (ГБЦ) в зависимости от такта двигателя.

Фазы газораспределения зависят от расположения кулачков распределительного вала. Поэтому на одновальных двигателях возможна только одновременная регулировка фаз впуска и выпуска. На двухвальных двигателях возможна раздельная регулировка фазы впуска и фазы выпуска.

Это позволяет оптимизировать работу двигателя под различные режимы.

Когда кулачок распределительного вала доходит до клапана, то начинает давить на него до тех пор, пока клапан полностью не откроется. Затем кулачок проходит дальше и пружина начинает выдавливать клапан, стремясь закрыть его. Как только давление со стороны распределительного вала исчезает, пружина полностью закрывает клапан. Угол поворота распределительного вала, в течение которого впускные или выпускные клапаны одного цилиндра открыты и называется фазой газораспределения.

Источник: https://contur-sb.com/fazorezka-printsip-raboty/

Фазорезка принцип работы — Станки, сварка, металлообработка

Фазорезка принцип работы
  • 1 Что такое фазоуказатель и как им пользоваться?
    • 1.1 Необходимость применения
    • 1.2 Инструкция по эксплуатации
  • 2 Фазовращатель в ДВС. Что это такое и основной принцип работы.

    Разберем VVT, VVT-i, CVVT, VTC, VANOS, VTEC и прочие

  • 3 Конструктивное исполнение и основные моменты при выборе бензорезов, фото и видео
  • 4 Электроэрозионная обработка металлов
  • 5 Фазы и механизм газораспределения — как это работает и на что влияет

Одним из неотъемлемых инструментов электрика является фазоуказатель, с помощью которого можно быстро определить правильность чередования фаз.

В быту домашним мастерам весьма редко может пригодится данный прибор, а если к дому подведено 220 В, то вообще необходимость в нем отпадает.

А вот на производстве и при частой работе с трехфазной электросетью все же лучше обзавестись данным приспособлением. Далее мы расскажем, как пользоваться фазоуказателем и как работает данный прибор.

Необходимость применения

Существуют такие ситуации, во время которых подключение сети трехфазного типа должно выполнятся в порядке чередования фаз. Дело состоит в том, что направление, по которому вращается ротор во время подключения к сети асинхронного двигателя нет гарантии точно указать, если не выполняем в строгости процедуру фазировки.

К примеру, когда это касается эксплуатации вентилятора для соответствующей системы или привода для работы насоса, то необходимо чётко знать направление вращения. Это обеспечивает выполнение технологического цикла.

Поэтому соблюсти последовательно соединения в таком случае есть важным. Для того чтобы решать данную проблему следует прибегать к помощи специального прибора, который называется фазоуказателем. Это позволяет понять, для чего он нужен.

https://www.youtube.com/watch?v=JGsUG9EuLhM

Область применения фазоуказателя довольно широка и постоянно растёт.

Если фазировка выставлена правильно, то порядок следования фаз происходит от А далее к В и оканчивается С. Таким же порядком определяется и направление по вращению двигателя. К примеру, если провода, которые питают обмотки, подсоединены в правильном порядке, то происходит эксплуатация ротора двигателя условно по направлению часовой стрелки.

Однако в ситуации, когда две из данных фаз будут поменяны, произойдёт нарушение направления вращения ротора. Тогда технологический процесс, в котором задействован двигатель, будет просто нарушен. Это приведёт к тому, что оборудование, которое используется в приводе, будет нарушено и выйдет из строя.

После этого, если произвести обратную процедуру с фазами, то порядок работы двигателя войдёт в норму и процесс будет корректным.

Фазовращатель в ДВС. Что это такое и основной принцип работы. Разберем VVT, VVT-i, CVVT, VTC, VANOS, VTEC и прочие

Эффективность двигателя внутреннего сгорания зачастую зависит от процесса газообмена, то есть наполнения воздушно-топливной смеси и отвода уже отработанных газов.

Как мы уже с вами знаем, этим занимается ГРМ (газораспределительный механизм), если правильно и «тонко» настроить его под определенные обороты, можно добиться очень не плохих результатов в КПД.

[su_box style="default" title="" box_color="#F27405" radius="0"]

Инженеры давно бьются над этой проблемой, решать ее можно различными способами, например воздействием на сами клапана или же поворотом распределительных валов …

[/su_box]

Чтобы клапана ДВС работали всегда правильно и не были подвержены износу, вначале появились просто «толкатели», затем гидрокомпенсаторы, но этого оказалось мало, поэтому производители начали внедрение так называемых «фазовращателей» на распределительные валы.

Зачем вообще нужны фазовращатели?

Чтобы это понять что такое фазовращатели и зачем они нужны, прочтите для начала полезную информацию. Все дело в том, что двигатель работает не одинаково на различных оборотах. Для холостых и не высоких оборотов идеальными будут «узкие фазы», а для высоких – «широкие».

Узкие фазы – если коленчатый вал вращается «медленно» (холостой ход), то объем и скорость отвода отработанных газов также невелики.

Именно здесь идеально применять «узкие» фазы, а также минимальное «перекрытие» (время одновременного открытия впускных и выпускных клапанов) – новая смесь не проталкивается в выпускной коллектор, через открытый выпускной клапан, но и соответственно отработанные газы (почти) не проходят во впускной. Это идеальное сочетание.

Если же сделать «фазирование» — шире, именно при невысоких вращениях коленчатого вала, то «отработка» может смешаться с поступающими новыми газами, снизив тем самым ее качественные показатели, что однозначно снизит мощность (мотор станет неустойчиво работать или даже заглохнет).

Широкие фазы – когда обороты растут, соответственно растет и объем и скорость перекачиваемых газов. Здесь уже важно быстрее продувать цилиндры (от отработки) и быстрее загонять в них поступающую смесь, фазы должны быть «широкими».

Источник: https://stanki-info.com/fazorezka-printsip-raboty/

]]>