Электрохимзащита трубопроводов принцип действия

Содержание

Варианты катодной защиты трубопроводов – преимущества и недостатки способов

Электрохимзащита трубопроводов принцип действия

До сих пор при обустройстве протяжённых промышленных трубопроводов наиболее востребованным материалом изготовления труб является сталь.

Обладая множеством замечательных свойств, таких как механическая прочность, способность функционировать при больших значениях внутренних давления и температуры и стойкость к сезонным изменениям погоды, сталь имеет и серьёзный недостаток: склонность к коррозии, приводящей к разрушению изделия и, соответственно, неработоспособности всей системы.

Один из способов защиты от этой угрозы – электрохимический, включающий катодную и анодную защиту трубопроводов; об особенностях и разновидностях катодной защиты будет рассказано ниже.

Определение электрохимической защиты

Электрохимическая защита трубопроводов от коррозии – процесс, осуществляемый при воздействии постоянного электрического поля на предохраняемый объект из металлов или сплавов. Поскольку обычно доступен для работы переменный ток, используются специальные выпрямители для преобразования его в постоянный.

В случае катодной защиты трубопроводов защищаемый объект путём подачи на него электромагнитного поля приобретает отрицательный потенциал, то есть делается катодом.

Соответственно, если ограждаемый от коррозии отрезок трубы становится «минусом», то заземление, подводящееся к нему, – «плюсом» (т.е. анодом).

Антикоррозионная защита по такой методике невозможна без присутствия электролитической, с хорошей проводимостью, среды. В случае обустройства трубопроводов под землёй её функцию выполняет грунт. Контакт же электродов обеспечивается путём применения хорошо проводящих электрический ток элементов из металлов и сплавов.

В ходе протекания процесса между средой-электролитом (в данном случае грунтом) и защищаемым от коррозии элементом возникает постоянная разница потенциалов, значение которой контролируется при помощи высоковольтных вольтметров.

Классификация методик электрохимической катодной защиты

Такой способ предупреждения коррозии был предложен в 20-х годах XIX века и поначалу использовался в судостроении: медные корпуса кораблей обшивались протекторами-анодами, значительно снижающими скорость корродирования металла.

После того, как была установлена эффективность новой технологии, изобретение стало активно применяться в других областях промышленности. Через некоторое время оно было признано одним из самых эффективных способов защиты металлов.

В настоящее время используется два основных типа катодной защиты трубопроводов от коррозии:

  1. Самый простой способ: к металлическому изделию, требующему предохранения от коррозии, подводится внешний источник электрического тока. В таком исполнении сама деталь приобретает отрицательный заряд и становится катодом, роль же анода выполняют инертные, не зависящие от конструкции, электроды.
  2. Гальванический метод. Нуждающаяся в защите деталь соприкасается с защитной (протекторной) пластиной, изготавливаемой из металлов с большими значениями отрицательного электрического потенциала: алюминия, магния, цинка и их сплавов. Анодами в этом случае становятся оба металлических элемента, а медленное электрохимическое разрушение пластины-протектора гарантирует поддержание в стальном изделии требуемого катодного тока. Через более или менее долгое время, в зависимости от параметров пластины, она растворяется полностью.

Характеристики первого метода

Этот способ ЭХЗ трубопроводов, в силу простоты, наиболее распространён. Применятся он для предохранения крупных конструкций и элементов, в частности, трубопроводов подземного и наземного типов.

Методика помогает противостоять:

  • питтинговой коррозии;
  • коррозии из-за присутствия в зоне расположения элемента блуждающих токов;
  • коррозии нержавеющей стали межкристального типа;
  • растрескиванию латунных элементов вследствие повышенного напряжения.

Характеристики второго метода

Эта технология предназначается, в отличие от первой, в том числе для защиты изделий небольших размеров. Методика наиболее популярна в США, в то время как в Российской Федерации используется редко. Причина в том, что для проведения гальванической электрохимическая защита трубопроводов необходимо наличие на изделии изоляционного покрытия, а в России магистральные трубопроводы таким образом не обрабатываются.

Особенности ЭХЗ трубопроводов

Главной причиной выхода трубопроводов из строя (частичной разгерметизации или полного разрушения отдельных элементов) является коррозия металла.

В результате образования на поверхности изделия ржавчины на его поверхности появляются микроразрывы, раковины (каверны) и трещины, постепенно приводящие к выходу системы из строя.

Особенно эта проблема актуальна для труб, пролегающих под землёй и всё время соприкасающихся с грунтовыми водами.

https://www.youtube.com/watch?v=lMZulcgv5NY

Принцип действия катодной защиты трубопроводов от коррозии предполагает создание разности электрических потенциалов и реализуется двумя вышеописанными способами.

После проведения измерений на местности было установлено, что необходимый потенциал, при котором замедляется любой коррозионный процесс, составляет –0,85 В; у находящихся же под слоем земли элементов трубопровода его естественное значение равно –0,55 В.

Чтобы существенно замедлить процессы разрушения материалов, нужно добиться снижения катодного потенциала защищаемой детали на 0,3 В. Если добиться этого, скорость коррозии стальных элементов не будет превышать значений 10 мкм/год.

Одну из самых серьёзных угроз металлическим изделиям представляют блуждающие токи, то есть электрические разряды, проникающие в грунт вследствие работы заземлений линий энергопередачи (ЛЭП), громоотводов или передвижения по рельсам поездов. Невозможно определить, в какое время и где они проявятся.

Разрушающее воздействие блуждающих токов на стальные элементы конструкций проявляется, когда эти детали обладают положительным электрическим потенциалом относительно электролитической среды (в случае трубопроводов – грунта). Катодная методика сообщает защищаемому изделию отрицательный потенциал, в результате чего опасность коррозии из-за этого фактора исключается.

Оптимальным способом обеспечения контура электрическим током является использование внешнего источника энергии: он гарантирует подачу напряжения, достаточного для «пробивания» удельного сопротивления грунта.

Обычно в роли такого источника выступают воздушные линии энергопередачи с мощностями 6 и 10 кВт. В случае отсутствия на участке пролегания трубопровода ЛЭП следует использовать генераторы мобильного типа, функционирующие на газе и дизельном топливе.

Что нужно для катодной электрохимической защиты

Для обеспечения снижения коррозии на участках пролегания трубопроводов используются особые приспособления, называемые станциями катодной защиты (СКЗ).

Эти станции включают в себя следующие элементы:

  • заземление, выступающее в роли анода;
  • генератор постоянного тока;
  • пункт контроля, измерений и управления процессом;
  • соединительные приспособления (провода и кабели).

Станции катодной защиты вполне эффективно выполняют основную функцию, при подключении к независимому генератору или ЛЭП защищая одновременно несколько расположенных поблизости участков трубопроводов.

Регулировать параметры тока можно как вручную (заменяя трансформаторные обмотки), так и в автоматизированном режиме (в случае, когда в контуре имеются тиристоры).

Наиболее совершенной среди применяемых на территории РФ станций катодной защиты признаётся «Минерва-3000» (проект СКЗ по заказу «Газпрома» был создан французскими инженерами). Одна такая станция позволяет обеспечить безопасность около 30 км пролегающего под землей трубопровода.

Плюсы «Минервы-3000»:

  • высокий уровень мощности;
  • возможность быстрого восстановления после возникновения перегрузок (не более 15 секунд);
  • оснащённость необходимыми для контроля рабочих режимов узлами цифровой регулировки системы;
  • абсолютно герметичные ответственные узлы;
  • возможность контролировать функционирование установки удалённо, при подключении специального оборудования.

Вторая наиболее популярная в России СКЗ – «АСКГ-ТМ» (адаптивная телемеханизированная станция катодной защиты). Мощность таких станций меньше, чем упомянутых выше (от 1 до 5 кВт), но их возможности автоматического контроля работы улучшены за счёт наличия в исходной комплектации телеметрического комплекса с дистанционным управлением.

Обе станции требуют источника напряжения мощностью 220 В, управляются с помощью модулей GPRS и характеризуются достаточно скромными габаритами — 500×400×900 мм при весе 50 кг. Срок эксплуатации СКЗ – от 20 лет.

Читайте также  Испытательное давление трубопроводов на прочность и герметичность

Источник: https://trubaspec.com/montazh-i-remont/varianty-katodnoy-zashchity-truboprovodov-preimushchestva-i-nedostatki-sposobov.html

Устройство электрохимзащиты для газопровода

Коррозия оказывает пагубное влияние на техническое состояние подземных трубопроводов, под ее воздействием нарушается целостность газопровода, появляются трещины. Для защиты от такого процесса применяют электрохимзащиту газопровода.

На состояние стальных трубопроводов оказывает влияние влажность почвы, ее структура и химический состав. Температура сообщаемого по трубам газа, блуждающие в земле токи, вызванные электрифицированным транспортом и климатические условия в целом.

Виды коррозии:

  • Поверхностная. Распространяется сплошным слоем по поверхности изделия. Представляет наименьшую опасность для газопровода.
  • Местная. Проявляется в виде язв, щелей, пятен. Наиболее опасный вид коррозии.
  • Усталостное коррозионное разрушение. Процесс постепенного накопления повреждений.

Механизм разрушения металлов при коррозии

Методы электрохимзащиты от коррозии:

  • пассивный метод;
  • активный метод.

Суть пассивного метода электрохимзащиты заключается в нанесении на поверхность газопровода специального защитного слоя, препятствующего вредному воздействию окружающей среды. Таким покрытием может быть:

  • битум;
  • полимерная лента;
  • каменноугольный пек;
  • эпоксидные смолы.

На практике редко получается нанести электрохимическое покрытие равномерно на газопровод. В местах зазоров с течением времени металл все же повреждается.

Активный метод электрохимзащиты или метод катодной поляризации заключается в создании на поверхности трубопровода отрицательного потенциала, предотвращающего утечку электричества, тем самым предупреждая появление коррозии.

Принцип действия электрохимзащиты

Чтобы защитить газопровод от коррозии, нужно создать катодную реакцию и исключить анодную. Для этого на защищаемом трубопроводе принудительно создается отрицательный потенциал.

Принципы построения локальной катодной защиты

В грунте размещают анодные электроды, подключают отрицательный полюс внешнего источника тока непосредственно к катоду – защищаемому объекту. Для замыкания электрической цепи, положительный полюс источника тока соединяется с анодом – дополнительным электродом, установленным в общей среде с защищаемым трубопроводом.

Анод в данной электрической цепи выполняет функцию заземления. За счет того, что анод имеет более положительный потенциал, чем металлический объект, происходит его анодное растворение.

Процесс коррозии подавляется под воздействием отрицательно заряженного поля защищаемого объекта. При катодной защите от коррозии, процессу порчи будет подвергается непосредственно анодный электрод.

Для увеличения срока эксплуатации анодов, их изготавливают из инертных материалов, устойчивых к растворению и другим воздействиям внешних факторов.

Станция электрохимзащиты

Станция электрохимзащиты – это устройство, которое служит источником внешнего тока в системе катодной защиты. Данная установка подключается к сети, 220 Вт и производит электричество с установленными выходными значениями.

Станция устанавливается на земле рядом с газопроводом. Она должна иметь степень защиты IP34 и выше, так как работает на открытом воздухе.

Станции катодной защиты могут иметь различные технические параметры и функциональные особенности.

Типы станций катодной защиты:

  • трансформаторные;
  • инверторные.

Трансформаторные станции электрохимзащиты постепенно отходят в прошлое. Они представляют собой конструкцию из трансформатора, работающего с частотой 50 Гц и тиристорного выпрямителя. Минусом таких устройств является несинусоидальная форма генерируемой энергии. Вследствие чего, на выходе происходит сильное пульсирование тока и снижается его мощность.

Инверторная станция электрохимзащиты имеет преимущество у трансформаторной. Ее принцип основан на работе высокочастотных импульсных преобразователей.

Особенностью инверторных устройств является зависимость размера трансформаторного блока от частоты преобразования тока. При более высокой частоте сигнала требуется меньше кабеля, снижаются тепловые потери.

В инверторных станциях, благодаря сглаживающим фильтрам, уровень пульсации производимого тока имеет меньшую амплитуду.

Электрическая цепь, которая приводит в работу станцию катодной защиты, выглядит так: анодное заземление – грунт – изоляция объекта защиты.

https://www.youtube.com/watch?v=l_pU59HIdlo

При установке станции защиты от коррозии учитываются следующие параметры:

  • положение анодного заземления (анод-земля);
  • сопротивление грунта;
  • электропроводимость изоляции объекта.

Установки дренажной защиты для газопровода

При дренажном способе электрохимзащиты источник тока не требуется, газопровод с помощью блуждающих в земле токов сообщается с тяговыми рельсами железнодорожного транспорта. Осуществляется электрическая взаимосвязь благодаря разности потенциалов железнодорожных рельсов и газопровода.

Схема электрических дренажей

Посредством дренажного тока создается смещение электрического поля находящегося в земле газопровода. Защитную роль в данной конструкции играют плавкие предохранители, а также автоматические выключатели максимальной нагрузки с возвратом, которые настраивают работу дренажной цепи после спада высокого напряжения.

Система поляризованных электродренажей осуществляется с помощью соединений вентильных блоков. Регулирование напряжения при такой установке осуществляется переключением активных резисторов. Если метод дал сбой, применяют более мощные электродренажи в виде электрохимзащиты, где анодным заземлителем служит железнодорожная рельса.

Установки гальванической электрохимзащиты

Использование протекторных установок гальванической защиты трубопровода оправданно, если вблизи объекта отсутствует источник напряжения – ЛЭП, или участок газопровода недостаточно внушителен по размерам.

Гальваническое оборудование служит для защиты от коррозии:

Гальваническая электрохимзащита

  • подземных металлических сооружений, не подсоединенных электрической цепью к внешним источникам тока;
  • отдельных незащищенных частей газопроводов;
  • частей газопроводов, которые изолированы от источника тока;
  • строящихся трубопроводов, временно не подключенных к станциям защиты от коррозии;
  • прочих подземных металлических сооружений (сваи, патроны, резервуары, опоры и др.).

Гальваническая защита сработает наилучшим образом в почвах с удельным электрическим сопротивлением, находящимся в пределах 50 Ом.

Установки с протяженными или распределенными анодами

При использовании трансформаторной станции защиты от коррозии ток распределяется по синусоиде. Это неблагоприятным образом сказывается на защитном электрическом поле. Происходит либо избыточное напряжение в месте защиты, которое влечет за собой высокий расход электроэнергии, либо неконтролируемая утечка тока, что делает электрохимзащиту газопровода неэффективной.

Схема анодной защиты трубопроводов

Практика использования протяженных или распределенных анодов помогает обойти проблему неравномерного распределения электричества. Включение распределенных анодов в схему электрохимзащиты газопровода способствует увеличению зоны защиты от коррозии и сглаживанию линии напряжения. Аноды при такой схеме размещаются в земле, на протяжении всего газопровода.

Регулировочное сопротивление или специальное оборудование обеспечивает изменение тока в необходимых пределах, изменяется напряжение анодного заземления, при помощи этого регулируется защитный потенциал объекта.

Если используется сразу несколько заземлителей, напряжение защитного объекта можно изменять, меняя количество активных анодов.

ЭХЗ трубопровода посредством протекторов основана на разности потенциалов протектора и газопровода, находящегося в земле. Почва в данном случае представляет собой электролит; металл восстанавливается, а тело протектора разрушается.

: Защита от блуждающих токов

Источник: https://promzn.ru/gazovaya-promyshlennost/elektrohimzashhita-dlya-gazoprovoda.html

Электрохимзащита трубопроводов принцип действия — Станки, сварка, металлообработка

Средства защиты от коррозии позволяют продлить срок службы металлической конструкции, а также сохранить ее технико-физические свойства в процессе эксплуатации. Несмотря на разнообразие методов обеспечения противокоррозийного действия, полностью уберечь объекты от поражения ржавчиной удается лишь в редких случаях.

Эффективность такой защиты зависит не только от качества протекторной технологии, но и от условий ее применения.

В частности, для сбережения металлической структуры трубопроводов свои лучшие свойства демонстрирует электрохимическая защита от коррозии, основанная на работе катодов.

Предотвращение образования ржавчины на подобных коммуникациях, разумеется, не единственная сфера применения данной технологии, но по совокупности характеристик это направление можно рассматривать как наиболее актуальное для электрохимической протекции.

Защита металлов от ржавчины посредством электрохимического воздействия основывается на зависимости величины электродного потенциала материала от скорости процесса коррозии. Металлические конструкции должны эксплуатироваться в том диапазоне потенциалов, где их анодное растворение будет ниже допустимого предела. Последний, к слову, определяется технической документацией по эксплуатации сооружения.

На практике электрохимическая защита от коррозии предполагает подключение к готовому изделию источника с постоянным током.

Электрическое поле на поверхности и в структуре защищаемого объекта формирует поляризацию электродов, за счет которой управляется и процесс коррозийного поражения.

В сущности, анодные зоны на металлической конструкции становятся катодными, что позволяет смещать негативные процессы, обеспечивая сохранность структуры целевого объекта.

Существует катодная и анодная защита электрохимического типа. Наибольшую популярность все же получила первая концепция, которая и применяется для защиты трубопроводов.

По общему принципу, при реализации данного метода к объекту подводится ток с отрицательным полюсом от внешнего источника.

В частности, таким образом может защищаться труба стальная или медная, в результате чего будет происходить поляризация катодных участков с переходом их потенциалов в анодное состояние. В итоге коррозийная активность защищаемой конструкции будет сведена практически к нулю.

При этом и катодная защита может иметь разные варианты исполнения. Широко практикуется вышеописанная техника поляризации от внешнего источника, но эффективно действует и метод деаэрации электролита с уменьшением скорости катодных процессов, а также созданием протекторного барьера.

Уже не раз отмечалось, что принцип катодной защиты реализуется за счет внешнего источника тока. Собственно, в его работе и заключается главная функция антикоррозийной защиты. Выполняют эти задачи специальные станции, которые, как правило, входят в общую инфраструктуру технического обслуживания трубопроводов.

Читайте также  Холодная врезка в трубопровод под давлением

Станции катодной защиты от коррозии

функция катодной станции заключается в стабильном обеспечении током целевого металлического объекта в соответствии с методом катодной поляризации. Используют такое оборудование в инфраструктуре подземных газо- и нефтепроводов, в трубах водоснабжения, тепловых сетях и т.д.

Существует множество разновидностей таких источников, при этом наиболее распространенное устройство катодной защиты предусматривает наличие в составе:

  • оборудования преобразователя тока;
  • провода для подводки к защищаемому объекту;
  • анодного заземлителя.

При этом существует разделение станций на инверторные и трансформаторные. Имеют место и другие классификации, но они ориентированы на сегментацию установок или по сферам применения, или же по техническим характеристикам и параметрам входных данных. Базовые принципы работы наиболее ярко иллюстрируют обозначенные два типа катодных станций.

Трансформаторные установки катодной защиты

Сразу следует отметить, что данный вид станций является устаревающим. На его смену как раз и приходят инверторные аналоги, которые имеют как плюсы, так и минусы. Так или иначе, трансформаторные модели применяются даже на новых пунктах обеспечения электрохимической защиты.

В качестве основы таких объектов используется низкочастотный трансформатор на 50 Гц и тиристорный преобразователь. Для системы управления тиристорами применяются простейшие устройства, среди которых фазоимпульсные регуляторы мощности. Более ответственный подход к решению задач управления предполагает использование контроллеров с широким функционалом.

Современная катодная защита от коррозии трубопроводов с таким оснащением позволяет регулировать параметры выходного тока, показатели напряжения, а также выравнивать защитные потенциалы. Что касается недостатков трансформаторного оборудования, то они сводятся к высокой степени пульсации тока на выходе при низком коэффициенте мощности. Объясняется этот изъян не синусоидой формой тока.

Решить проблему с пульсацией в определенной мере позволяет внедрение в систему низкочастотного дросселя, но его габариты соответствуют размерам самого трансформатора, что не всегда делает возможным такое дополнение.

Инверторная станция катодной защиты

Установки инверторного типа базируются на импульсных высокочастотных преобразователях. Одним из главных преимуществ от использования станций этого типа является высокий КПД, достигающий 95%. Для сравнения, у трансформаторных установок этот показатель в среднем достигает 80%.

Иногда на первый план выходят и другие достоинства. Например, небольшие габариты инверторных станций расширяют возможности для их применения на сложных участках. Есть и финансовые преимущества, которые подтверждает практика применения такого оборудования.

Так, инверторная катодная защита от коррозии трубопроводов быстро окупается и требует минимальных вложений в техническое содержание.

Впрочем, эти качества отчетливо заметны лишь при сравнении с трансформаторными установками, но уже сегодня появляются более эффективные новые средства обеспечения тока для трубопроводов.

Конструкции катодных станций

Такое оборудование представлено на рынке в разных корпусах, формах и габаритах. Конечно, распространена и практика индивидуального проектирования таких систем, что позволяет не только получить оптимальную для конкретных нужд конструкцию, но и обеспечить необходимые эксплуатационные параметры.

Строгий расчет характеристик станции позволяет в дальнейшем оптимизировать затраты на ее установку, транспортировку и хранение.

К примеру, для небольших объектов вполне подойдет катодная защита от коррозии трубопроводов на инверторной основе массой в 10-15 кг и мощностью 1,2 кВт.

Оборудование с такими характеристиками можно обслужить и легковым автомобилем, однако для масштабных проектов могут применяться и более массивные и тяжелые станции, требующие подключения грузовой техники, подъемного крана и бригад монтажников.

Защитный функционал

Особое внимание при разработке катодных станций уделяется защите самого оборудования. Для этого интегрируются системы, позволяющие предохранять станции от короткого замыкания и обрыва нагрузок. В первом случае используются специальные предохранители, позволяющие обрабатывать аварийные режимы работы установок.

Что касается скачков и обрывов напряжения, то станция катодной защиты вряд ли серьезно пострадает от них, но зато может возникнуть опасность поражения током. Например, если в обычном режиме оборудование эксплуатируется небольшим напряжением, то после обрыва скачок в показателях может довести до 120 В.

Другие виды электрохимической защиты

Помимо катодной защиты практикуются и технологии электрического дренажа, а также протекторные методы предотвращения коррозии. Наиболее перспективным направлением считается именно специальная протекция от образования коррозии.

В данном случае также к целевому объекту подключаются активные элементы, обеспечивающие преобразование поверхности с катодами посредством тока.

Например, труба стальная в составе газопровода может быть защищена цинковыми или алюминиевыми цилиндрами.

Заключение

Способы электрохимической защиты нельзя отнести к новым и, тем более, инновационным. Эффективность применения подобных методик в борьбе с процессами ржавления освоена давно. Однако, широкому распространению этого способа препятствует один серьезный недостаток.

Источник: https://stanki-info.com/elektrohimzaschita-truboprovodov-printsip-deystviya/

Электрохимическая защита трубопроводов от коррозии — электронный каталог продукции,разработка мобильных приложений,АОС,автоматизированные обучающие системы,семинары по нефтегазовой тематике,разработка СТУ,СТУ

Электрохимическая защита от коррозии состоит из катодной и дренажной защиты. Катодная защита трубопроводов осуществляется двумя основными методами: применением металлических анодов-протекторов (гальванический протекторный метод) и применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс — с анодным заземлением (электрический метод).

Рис. 1. Принцип работы катодной защиты

Гальваническая протекторная защита от коррозии

Наиболее очевидным способом осуществления электрохимической защиты металлического сооружения, имеющего непосредственный контакт с электролитической средой, является метод гальванической защиты, в основу которого положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы.

Таким образом, если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом-протектором и будет разрушаться, защищая металл с менее отрицательным потенциалом. Протекторы, по существу, служат портативными источниками электроэнергии.

В качестве основных материалов для изготовления протекторов используются магний, алюминий и цинк. Из сопоставления свойств магния, алюминия и цинка видно, что из рассматриваемых элементов магний обладает наибольшей электродвижущей силой.

В то же время одной из наиболее важных практических характеристик протекторов является коэффициент полезного действия, показывающий долю массы протектора, использованной на получение полезной электрической энергии в цепи. К.П.Д.

протекторов, изготовленных из магния и магниевых сплавов, редко превышают 50 % в, в отличие от протекторов на основе Zn и Al с К.П.Д. 90 % и более.

Рис. 2. Примеры магниевых протекторов

Обычно протекторные установки применяются для катодной защиты трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями, отдельных участков трубопроводов, а также резервуаров, стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай, и других сосредоточенных объектов.

В то же время протекторные установки очень чувствительны к ошибкам в их размещении и комплектации. Неправильный выбор или размещение протекторных установок приводит к резкому снижению их эффективности.

Катодная защита от коррозии

Наиболее распространенный метод электрохимической защиты от коррозии подземных металлических сооружений — это катодная защита, осуществляемая путем катодной поляризации защищаемой металлической поверхности. На практике это реализуется путем подключения защищаемого трубопровода к отрицательному полюсу внешнего источника постоянного тока, называемого станцией катодной защиты.

Положительный полюс источника соединяют кабелем с внешним дополнительным электродом, сделанным из металла, графита или проводящей резины. Этот внешний электрод размещается в той же коррозионной среде, что и защищаемый объект, в случае подземных промысловых трубопроводов, в почве.

Таким образом, образуется замкнутая электрическая цепь: дополнительный внешний электрод — почвенный электролит — трубопровод — катодный кабель — источник постоянного тока — анодный кабель. В составе данной электрической цепи трубопровод является катодом, а дополнительный внешний электрод, присоединенный к положительному полюсу источника постоянного тока, становится анодом. Данный электрод называется анодным заземлением.

Отрицательно заряженный полюс источника тока, присоединенный к трубопроводу, при наличии внешнего анодного заземления катодно поляризует трубопровод, при этом потенциал анодных и катодных участков практически выравнивается.

Таким образом, система катодной защиты состоит из защищаемого сооружения, источника постоянного тока (станции катодной защиты), анодного заземления, соединительных анодной и катодной линий, окружающей их электропроводной среды (почвы), а также элементов системы мониторинга — контрольно-измерительных пунктов.

Дренажная защита от коррозии

Дренажная защита трубопроводов от коррозии блуждающими токами  осуществляется путем направленного отвода этих токов к источнику или в землю. Установка дренажной защиты может быть нескольких видов: земляной, прямой, поляризованный и усиленный дренажи.

Рис. 3. Станция дренажной защиты

Земляной дренаж осуществляется заземлением трубопроводов дополнительными электродами в местах их анодных зон, прямой дренаж — созданием электрической перемычки между трубопроводом и отрицательным полюсом источника блуждающих токов, например рельсовой сетью электрифицированной железной дороги. Поляризованный дренаж в отличие от прямого обладает только односторонней проводимостью, поэтому при появлении положительного потенциала на рельсах дренаж автоматически отключается. В усиленном дренаже дополнительно в цепь включается преобразователь тока, позволяющий увеличивать дренажный ток.

Читайте также  Для чего нужен компенсатор на трубопроводе

P.S. Обзор технических решений по ЭХЗ других металлических конструкций и сооружений можно прочитать здесь.

Скачайте наше специализированное учебно-справочное приложение «Защита от коррозии»

Источник: http://transenergostroy.ru/blog/elektrohimicheskaya_zashhita_truboprovodov_ot_korrozii.html

Электрохимическая защита — основные понятия, принцип работы | ЭХЗ-ЦЕНТР Москва

Электрохимическая коррозия — распространенный вид коррозионного процесса, возникающий при взаимодействии металлоконструкции с окружающей средой. Явление вызвано термодинамической неустойчивостью металлов в окружающих их средах и наличия в них блуждающих токов.

Блуждающие токи, появляющиеся в грунте при его использовании как токопроводящей среды, несут с собой опасность для трубопроводов из металла. Под их воздействием трубы разъедает ржавчина, возникает течь — в результате металлические сооружения разрушаются и приходят в негодность.

Продлить период службы трубопроводов и прочих подземных металлических сооружений позволяет строительство электрохимзащиты. Это один из самых надежных способов предохранения металлоконструкций от электрохимической коррозии.

Понятие электрохимической защиты

Электрохимическая защита оборудования и сооружений из металлов — комплекс мероприятий, предпринимаемых с целью предотвращения коррозионных процессов, поддержания работоспособности защищаемых объектов в период эксплуатации. Основной результат от использования средств ЭХЗ — охрана инженерных коммуникаций от воздействия коррозии, влекущей огромные экономические потери из-за преждевременного износа оборудования.

Суть ЭХЗ состоит в управлении токами коррозии, всегда образующимися при контакте металлоконструкции и электролита. Посредством электрохимзащиты анодная разрушающаяся зона переходит с защищаемого объекта на анодное заземление или стороннее изделие из более активного металла. В результате смещения электродного потенциала металла распространение коррозии останавливается.

Главное при устройстве электрохимзащиты — обеспечить обязательный контакт защищаемого сооружения и внешнего анода с помощью металлического кабеля или контакта и электролита. Электрическая цепь, в которую входит защищаемый объект, кабель ЭХЗ, анод и электролит, должна замкнуться — в противном случае защитного тока в системе не возникнет.

Типы ЭХЗ

Различают 2 вида ЭХЗ от коррозии:

  • анодная;
  • катодная и ее разновидность — протекторная.

Анодная

При анодной защите потенциал металла смещается в положительную сторону. Ее эффективность зависит от свойств металла и электролита. Методика используется для конструкций из углеродистых, высоколегированных и нержавеющих сталей, титановых сплавов и различных пассивирующихся металлов. Такая ЭХЗ отлично решает поставленные задачи в средах, хорошо проводящих ток.

Анодная электрохимзащита применяется реже, чем катодная, поскольку к защищаемому объекту выдвигается немало строгих требований.

Однако у нее есть свои преимущества: значительное замедление скорости коррозионного процесса, исключение возможности попадания продуктов коррозии в среду или производимую продукцию.

Оборудование ЭХЗ этого типа выбирают на основе малорастворимых элементов: платины, нержавеющих высоколегированных сплавов, никеля, свинца.

Анодная защита реализуется различными способами: смещением потенциала в положительную сторону посредством источника внешнего тока или введением окислителей в коррозионную среду.

Катодная

Катодная электрохимзащита используется в случаях, когда металлу не присуща склонность переходить в пассивное состояние.

Ее суть заключается в приложении к металлоизделию внешнего тока от отрицательного полюса, поляризующего катодные участки, тем самым приближая показатель потенциала к анодным.

Положительный полюс, который имеет источник тока, присоединяется к аноду, за счет чего коррозия защищаемого объекта минимизируется. При этом анод постепенно разрушается, требуя замены.

Катодная защита может быть реализована различными способами:

  • поляризация от внешнего источника электротока;
  • снижение скорости протекания катодного процесса;
  • контакт с металлом, потенциал коррозии у которого в этой среде более электроотрицательный.

Поляризация от источника электротока, расположенного снаружи, часто используется при защите конструкций, находящихся в воде или почве. Этот вид системы ЭХЗ применяется для олова, алюминия, цинка, углеродистых и легированных сталей. В качестве внешнего источника тока выступают станции катодной защиты.

Протекторная

Строительство ЭХЗ протекторного типа подразумевает применение протектора. В этом случае к защищаемому сооружению присоединяют металл, имеющий более электроотрицательный потенциал. В результате разрушается не металлический объект, а протектор, который постепенно корродирует и требует замены на новый.

Данный тип электрохимзащиты эффективен в тех случаях, когда переходное сопротивление между окружающей средой и протектором небольшое. У каждого протектора есть свой радиус действия — это максимальное расстояние, на которое его можно удалить, не рискуя потерять защитный эффект.

Протекторная ЭХЗ применяется для предохранения от коррозионного разрушения сооружений, находящихся в нейтральных средах: в воздухе, почве, морской или речной воде. Протекторы для электрохимической защиты трубопроводов изготавливают из магния, цинка, алюминия, железа с дополнительным введением легирующих компонентов.

Для обеспечения высокого уровня протекторной защиты нужно правильно выбрать тип протектора в зависимости от объекта ЭХЗ (корпуса судов, резервуары с нефтепродуктами и пожарной водой, нефте газопроводы и другие металлоконструкции), а также важна среда где будет установлена протекторная группа (грунт, морская или речная вода, подтоварная вода). Данное условие является необходимым для обеспечения безопасности эксплуатации объекта ЭХЗ и увеличит эффективность протекторной защиты.

О станциях катодной защиты

Эффективное оборудование для ЭХЗ трубопроводов, расположенных под землей, — комплекс станции катодной защиты (СКЗ), состоит из следующих элементов:

  • станция катодной защиты;
  • анодные заземлители;
  • кабельные линии
  • пункт контроля и измерения;

Станции подключают к сети электроснабжения или автономным устройствам. Выходное напряжение на СКЗ может регулироваться вручную или в автоматическом режиме — по току защиты или потенциалу защищаемого объекта.

Строительство электрохимзащиты требует использования надежных составляющих системы. Наша компания предлагает широкий выбор качественного оборудования для защиты разных объектов. Оставьте заявку на сайте: мы вышлем вам прайс по оборудованию ЭХЗ и подробно проконсультируем по возникшим вопросам.

Источник: http://moscow.ehz.center/stati/elektrohim-zaschita/

Катодная защита от коррозии трубопроводов: оборудование, принцип работы

Средства защиты от коррозии позволяют продлить срок службы металлической конструкции, а также сохранить ее технико-физические свойства в процессе эксплуатации. Несмотря на разнообразие методов обеспечения противокоррозийного действия, полностью уберечь объекты от поражения ржавчиной удается лишь в редких случаях.

Эффективность такой защиты зависит не только от качества протекторной технологии, но и от условий ее применения.

В частности, для сбережения металлической структуры трубопроводов свои лучшие свойства демонстрирует электрохимическая защита от коррозии, основанная на работе катодов.

Предотвращение образования ржавчины на подобных коммуникациях, разумеется, не единственная сфера применения данной технологии, но по совокупности характеристик это направление можно рассматривать как наиболее актуальное для электрохимической протекции.

Общие сведения об электрохимической защите

Защита металлов от ржавчины посредством электрохимического воздействия основывается на зависимости величины электродного потенциала материала от скорости процесса коррозии. Металлические конструкции должны эксплуатироваться в том диапазоне потенциалов, где их анодное растворение будет ниже допустимого предела. Последний, к слову, определяется технической документацией по эксплуатации сооружения.

На практике электрохимическая защита от коррозии предполагает подключение к готовому изделию источника с постоянным током.

Электрическое поле на поверхности и в структуре защищаемого объекта формирует поляризацию электродов, за счет которой управляется и процесс коррозийного поражения.

В сущности, анодные зоны на металлической конструкции становятся катодными, что позволяет смещать негативные процессы, обеспечивая сохранность структуры целевого объекта.

Принцип работы катодной защиты

Существует катодная и анодная защита электрохимического типа. Наибольшую популярность все же получила первая концепция, которая и применяется для защиты трубопроводов.

По общему принципу, при реализации данного метода к объекту подводится ток с отрицательным полюсом от внешнего источника.

В частности, таким образом может защищаться труба стальная или медная, в результате чего будет происходить поляризация катодных участков с переходом их потенциалов в анодное состояние. В итоге коррозийная активность защищаемой конструкции будет сведена практически к нулю.

При этом и катодная защита может иметь разные варианты исполнения. Широко практикуется вышеописанная техника поляризации от внешнего источника, но эффективно действует и метод деаэрации электролита с уменьшением скорости катодных процессов, а также созданием протекторного барьера.

Уже не раз отмечалось, что принцип катодной защиты реализуется за счет внешнего источника тока. Собственно, в его работе и заключается главная функция антикоррозийной защиты. Выполняют эти задачи специальные станции, которые, как правило, входят в общую инфраструктуру технического обслуживания трубопроводов.

Оставьте комментарий