Что является носителем электрической энергии

Содержание

Как соединить несколько источников электрической энергии

Что является носителем электрической энергии

Электрическая энергия, вырабатываемая источниками электрической энергии — самый распространенный вид энергии в наше время. Процессы, связанные с данным видом электрической энергии, включают в себя под процессы, такие как — выработка (генерация), передача и потребление. Из этого можно выделить три группы устройств, которые принимают участие в этом процессе — источники электрической энергии, передаточные устройства и потребители.

Давайте подробно рассмотрим первую группы.

Источники электрической энергии.

Из самого названия можно догадаться, какую роль играют в электроэнергетике эти устройства, но все же я объясню.
Источник электрической энергии — устройство, механизм от которого потребители получают электрическую энергию по средству передаточных устройств.

Не имеет значения какого рода тока является этот источник, а также электрическая энергия является генерируемой или запасенной.

Источниками электрической энергии могут быть: все виды и типы генераторов, вторичные обмотки трансформаторов и автотрансформаторов, различные гальванические элементы, аккумуляторные батареи, солнечные батареи, различные пьезо элементы и даже грозовой разряд (молния) является источником электрической энергии. 

Как видите существует множество видов источников электрической энергии, что способствует широкому распространению электрической энергии.

Соединение источников электрической энергии

В электроэнергетике встречаются такие случаи, когда источников электрической энергии несколько, которые включены и питают одну электрическую цепь.
В зависимости от способа соединения источников, электрическая энергия ведет себя по-разному. Перед тем как углубляться в подробности следует сказать, что источники электрической энергии соединяют двумя способами — последовательно и параллельно.

Эти виды соединений я уже рассматривал при соединении конденсаторов и резисторов.

Давайте рассмотрим эти способы соединения на примере.
В качестве источника электрической энергии возьмем три обычных батарейки напряжением в 1.5 вольт каждая. Также нам понадобится вольтметр и соединительные провода.

последовательное соединение источников электрической энергии

Соединив батарейка последовательно, как показано на схеме, можно будит увидеть, что вольтметр покажет напряжение гораздо большее чем у одной батарейки, а именно 4.5 вольт. Так при последовательном соединении источников электрической энергии, напряжение всех источников, входящих в цепь складывается. Стоит отметить, что суммарная емкость и мощность батареек равняется показателям одной батарейки.

параллельное соединение источников электрической энергии

Если же соединять эти же батарейки параллельно, как на схеме выше, мы увидим, что напряжение цепи с тремя параллельно соединенными батарейками равняется напряжению одной батарейки. Но мощность и емкость этой цепи источников увеличилось в несколько раз, а именно в количество соединенных источников, в данном случаи в три раза, при условии, что мощность и ёмкости батареек одинаковы.

В электроэнергетике кроме батареек последовательно или параллельно могут соединять все источники электроэнергии. Но для каждого вида источника существуют определенные условия, такие как: напряжение всех соединяемых источников должно быть одинаково, как и мощность, во избежание возникновения уравнительных токов, для соединения трансформаторов необходимо также, чтобы коэффициенты трансформации были также равны.

Цели соединения источников электрической энергии.

Стоит отметить, что последовательное соединение источников электроэнергии нашло широкое применение лишь для источников постоянного тока, а именно гальванические элементов.
В современной электроэнергетике широко распространено параллельное соединение источников электрической энергии.

Это объясняется тем, что в современной системе электроснабжения отпадает необходимость в увеличении напряжения таким способом, эту функцию отлично выполняют повышающие трансформаторы. Тем более, что при последовательном соединении, при выходе из строя одного из источников, вся цепь обрывается и потребители обесточиваются.
А вот параллельное соединение может похвастаться своими плюсами. Оно позволяет повысить мощность всей сети.

Является очень удобным, так как при выходе из строя или необходимости в ремонте одного из источников электрической энергии нет необходимость лишать потребителей электрической энергии.

Параллельное соединение источников электрической энергии на столько удобно, что во времена советского союза, да и сейчас, но не так масштабно соединяли все электрические станции в одну энергосистему, что повышало качество снабжения электрической энергией, так как не было дефицита мощности, а также позволяли выводить целые станции и подстанции в ремонт без перебоев в электроснабжении и конечно же все они соединялись параллельно.

Источник: http://white-santa.ru/soedinenie_istochnikov_istochnikov_energii/

1. 19. Энергия заряженного уединенного проводника, конденсатора. Энергия электростатического поля

Энергиязаряженного проводника численно равнаработе, которую должны со­вершитьвнешние силы для его зарядки W=A. При перенесении заряда dqиз бесконечности на проводник совершаетсяра­бота dAпротив сил электростатического поля(по преодолению кулоновских силотталки­вания между одноименнымизарядами) : dA=dq=Cd.

Чтобызарядить тело от нулевого потенциаладо потенциала ,потребуется ра­бота .Энергиязаряженного проводника равна той работе,которую надо совершить, чтобы зарядитьего: .

Выражениепринято называтьсобственнойэнергией заряженного про­водника.

Увеличениепотенциала проводника при его зарядке сопровождаетсяусиле­нием электростатического поля,возрастает напряженность поля .Естественно предположить, что собственнаяэнергия заряженного проводника естьэнергия его электростатического поля.Проверим это предположение на примереоднородного поля плоского конденсатора. Повторяя ход вышеприведенного расчета,нетрудно получить энергию заряженногоплоского конденсатора,

где- разность потенциалов его обкладок. Подставим в эту формулу выражения дляемкости плоского конденсатора и разности потенциалов между обкладками.Тогда для энергии получим,гдеV=Sd- объем электростатического поля междуобкладками конденсатора.

Отсюдаследует, что собственная энергиязаряженного плоского конденсаторапропорциональна Vобъему его поля и на­пря­женности.Следовательно, необходимо считать, чтоэлектростатическое поле обладаетэнергией.Объемнаяплотность энергии электрического поля или энергия единицы объема равна ,.

Гдеже локализована энергия электростатическогополя и что является ее но­си­телем- заряды или само поле? Ответ на этотвопрос может дать только опыт. Од­накоэлектростатика не может ответить наданный вопрос, потому что она изучаетпосто­янные во времени поля неподвижныхзарядов, т.е.

в электростатике поля иза­ряды неотделимы друг от друга.

Опытыпоказали, что переменные во времениэлектрические поля могут суще­ствоватьобособленно, независимо от возбудившихих зарядов. Они распространя­ют­сяв пространстве в виде волн, способныхпереносить энергию. Отсюдаследует, что энергия локализована вполе и носителем электрической энергииявляется поле.

2.1. Электрический ток, сила и плотность тока

Электрическимтокомназывается направленное перемещениеэлектриче­ских зарядов.Различают :

а) ток проводимости- это упорядоченное перемещениемикроскопических за­рядов внутринеподвижного макроскопического тела(твердого, жидкого или газо­об­разного).Такими зарядами в металлах являютсясвободные электроны, в жидких про­водниках(электролитах) — положительные иотрицательные ионы, а также электроны;

б) ток в вакууме -это направленное движение заряженныхчастиц (электронов или ионов) в вакууменезависимо от макроскопических тел;

в) конвекционный ток- это направленное перемещение заряженногомакрос­ко­пического тела.

Такимобразом, для существования электрическоготока необходимо наличие заряженныхчастиц, называемых носителями тока, идвижущей силы. В первых двух случаяхдвижущей силой является электрическоеполе, энергия которого за­трачива­етсяна перемещение зарядов. Устройство,создающее электрическое поле длянаправленного движения зарядов ипополняющее его энергию, на­зываетсяисточникомэлектродвижущей силы(э.д.с.)или источникомтока.

ВеличинаI,определяемая количеством заряда,проходящего через поперечное сечениепроводника в единицу времени, называетсясилойтока .Если залюбые равные промежутки времени черезпоперечное сечение прохо­дит одинаковыйзаряд, ток называется постоянными определяется как . Сила токаI- скалярная физическая величина.

Электрический ток может быть обуслов­лендвижением как положительных, так иотрицательных носителей. Занаправле­ние элек­трического токаусловились принимать направлениедвижения положи­тельных заря­дов.

Если в действительности движутсяотрицательные заряды (напри­мер,электроны проводимости в проводнике),то направление электрического токасчитается проти­воположным направлениюих движения.

Единицасилы тока — ампер (А). Это сила постоянноготока, при которой через любое поперечноесечение проводника за одну секундупроходит заряд в один ку­лон, .

Дляхарактеристики распределенияэлектрического тока по сечениюпровод­ни­ка вводится векторплотности тока .Векторплотности тока численно равен за­ряду, переносимомув единицу времени через единичнуюплощадку, расположен­ную нормальнок направлению движения зарядов .Если токпостоянный, .Вектор плотности тока направлен вдольскорости движения положительных зарядов.

Пусть- средняя скорость упорядоченногодвижения носителей зарядов в проводнике,n0- их концентрация, е — заряд носителятока. Тогда за время dtчерез поперечное сечение Sпроводника переносится заряд .Сила тока,плотность тока.Ввекторном виде получаем .Единицейизмерения плотности тока в системе СИявляется А/м2.

Воздействиепостоянного электрического тока навещество лежит в основе многихэлектрофизических методов — электродиализа,электрофореза, электрофло­та­циии др.

Электродиализ- это быстрый и эффективный метод диализа:метод отделения веществ, находящихсяв коллоидном состоянии, от истиннорастворенных веществ с помощью пористоймембраны. Электродиализ широко применяетсяпри очистке са­хара, различныхмедицинских коллоидных препаратов, приприготовлении клея и же­латина, дляочистки сточных вод. Методом электродиализаосуществляется дуб­ление кожи.

Электрофлотацияпозволяет разделить жидкие неоднородныесистемы. Сущ­ность метода заключаетсяв разложении постоянным электрическимтоком воды на водород и кислород в видеочень мелких пузырьков, которые осаждаютсяна по­верх­ности твердой фазы (т.е.различных частиц) и увлекают ее вверх.Применение этого метода дает высокийпроизводственный эффект при очисткефруктовых со­ков, вина и другихпродуктов. При электрофлотации сточныхвод на мясокомбинате удается из­влечьи удалить из них 90-95% жира.

Читайте также  Проводит ли ЛЕД электрический ток?

Источник: https://StudFiles.net/preview/6180485/page:14/

Электрический ток

Электрический ток — направленное (упорядоченное) движение заряженных частиц.

Такими частицами могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

  • нагревание проводников (в сверхпроводниках не происходит выделения теплоты);
  • изменение химического состава проводников (наблюдается преимущественно в электролитах);
  • создание магнитного поля (проявляется у всех без исключения проводников).

Классификация:

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционный ток.

Различают переменный (англ. alternating current, AC), постоянный (англ. direct current, DC) и пульсирующий электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают.

Постоянный ток — ток, направление и величина которого слабо меняются во времени.

Переменный ток — ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону.

В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал).

В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Квазистационарный ток — «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие.

Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры.

Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.

Переменный ток высокой частоты — ток, в котором условие квазистационарности уже не выполняется, ток проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Пульсирующий ток — ток, у которого изменяется только величина, а направление остаётся постоянным.

Вихревые токи (токи Фуко) — «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока.

Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов.

При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики:

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света.

За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны).

То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Основные типы проводников:

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации.

При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них.

Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Источник: http://www.elektal.com.ua/spravochnik/articles/elektricheskiy_tok.html

Откуда берется электричество? Источники электроэнергии

Жизнь современного человека организована таким образом, что ее инфраструктурное обеспечение задействует множество компонентов с разными технико-функциональными свойствами. К таким относится и электроэнергия.

Рядовой потребитель не видит и не ощущает, как именно она выполняет свои задачи, но конечный результат вполне заметен в работе бытовой техники, да и не только. При этом вопросы, касающиеся того, откуда берется электричество, в представлении многих пользователей тех же домашних приборов остаются нераскрытыми.

Для расширения знаний в этой области стоит начать с понятия об электроэнергии как таковой.

Что такое электричество?

Сложность данного понятия вполне объяснима, так как энергию невозможно обозначить как обычный предмет или явление, доступное визуальному восприятию. При этом существуют два подхода к ответу на вопрос о том, что такое электричество. Определение ученых гласит, что электричество является потоком заряженных частиц, который характеризуется направленным движением. Как правило, под частицами понимаются электроны.

В самой же отрасли энергетики чаще рассматривают электроэнергию как продукт, вырабатываемый подстанциями. С этой точки зрения имеют значение и элементы, которые непосредственно участвуют в процессе формирования и передачи тока. То есть в данном случае рассматривается энергетическое поле, создаваемое вокруг проводника или другого заряженного тела.

Чтобы приблизить такое понимание энергии к реальному наблюдению, следует разобраться с таким вопросом: откуда берется электричество? Существуют разные технические средства для производства тока, и все они подчинены одной задаче — снабжению конечных потребителей.

Впрочем, до момента, когда пользователи смогут обеспечить свои приборы энергией, она должна пройти несколько этапов.

Выработка электричества

На сегодняшний день в сфере энергетики применяется порядка 10 видов станций, которые обеспечивают генерацию электричества. Это процесс, в результате которого происходит преобразование определенного вида энергии в токовый заряд. Иными словами, электричество формируется в ходе переработки другой энергии.

В частности, на специализированных подстанциях используют в качестве основного рабочего ресурса тепловую, ветреную, приливную, геотермальную и другие виды энергии. Отвечая на вопрос относительно того, откуда приходит электричество, стоит отметить инфраструктуру, которой обеспечена каждая подстанция.

Любой электрогенератор обеспечен сложной системой функциональных узлов и сетей, которые позволяют аккумулировать вырабатываемую энергию и готовить ее для дальнейшей передачи на узлы распределения.

Традиционные электростанции

Хотя за последние годы тенденции в энергетике меняются быстрыми темпами, можно выделить основные виды электростанций, работающих по классическим принципам. В первую очередь это объекты тепловой генерации. Выработка ресурса производится в результате сгорания органического топлива и последующего преобразования выделяемой тепловой энергии. При этом существуют разные виды таких станций, в числе которых теплофикационные и конденсационные.

Главным отличием между ними является возможность объектов второго типа также генерировать и тепловые потоки. То есть при ответе на вопрос о том, откуда берется электричество, можно отметить и станции, которые параллельно производят и другие виды энергии. Кроме тепловых объектов выработки, достаточно распространены гидро- и атомные станции.

Читайте также  Польза и вред статического электричества

В первом случае предполагается преобразование энергии от движения воды, а во втором — в результате деления атомов в специальных реакторах.

Альтернативные источники энергии

К данной категории источников энергии принято относить солнечные лучи, ветер, земельные недра и т. д. Особенно распространены различные генераторы, ориентированные на аккумуляцию и преобразование в электричество солнечной энергии.

Подобные установки привлекательны тем, что их может использовать любой потребитель в объемах, требуемых для снабжения его дома.

Впрочем, широкому распространению подобных генераторов мешает высокая стоимость оборудования, а также нюансы в эксплуатации, обусловленные зависимостью рабочих фотоэлементов от интенсивности света.

На уровне крупных энергетических компаний активно развиваются ветряные альтернативные источники электричества. Уже сегодня целый ряд стран использует программы постепенного перехода на этот вид энергообеспечения. Впрочем, и в данном направлении есть свои препятствия, обусловленные маломощностью генераторов при высокой стоимости. Относительно новым альтернативным источником энергии является естественное тепло Земли. В данном случае станции преобразуют тепловую энергию, полученную из глубин подземных каналов.

Распределение электроэнергии

После выработки электроэнергии начинается этап ее передачи и распределения, который обеспечивается энергосбытовыми компаниями. Поставщики ресурса организуют соответствующую инфраструктуру, основу которой составляют электрические сети.

Существует два вида каналов, по которым реализуется передача электричества, — воздушные и подземные кабельные линии. Данные сети являются конечным источником и главным ответом на вопрос о том, откуда берется электричество для разных нужд пользователей.

Организации-поставщики прокладывают специальные трассы для организации сетевого распределения электроэнергии, используя при этом разные виды кабелей.

Потребители электричества

Электроэнергия требуется для самых разных задач как в бытовом хозяйстве, так и в промышленном секторе. Классическим примером использования данного носителя энергии является освещение. Однако в наши дни электричество в доме служит для обеспечения работы более широкого спектра приборов и оборудования. И это лишь небольшая часть потребностей общества в энергоснабжении.

Данный ресурс также требуется для поддержания работы транспортной инфраструктуры: для обслуживания линий троллейбусов, трамваев и метро и т. д. Отдельно стоит отметить промышленные предприятия. Заводы, комбинаты и перерабатывающие комплексы зачастую требуют подключения огромных мощностей. Можно сказать, это самые крупные потребители электроэнергии, использующие данный ресурс для обеспечения работы технологического оборудования и местной инфраструктуры.

Управление объектами электроэнергетики

Помимо организации электросетевого хозяйства, которое технически обеспечивает возможность передачи и распределения энергии для конечных потребителей, работа данного комплекса невозможна без систем управления.

Для реализации этих задач поставщики используют оперативно-диспетчерские пункты, сотрудники которых реализуют централизованный контроль и управление работой вверенных им объектов электроэнергетики. В частности, подобные службы контролируют параметры сетей, к которым подключаются потребители электроэнергии на разных уровнях.

Отдельно стоит отметить и отделы диспетчерских пунктов, которые выполняют техобслуживание сетей, предотвращая износы и восстанавливая повреждения на отдельных участках линий.

Заключение

За все время существования энергетическая отрасль претерпела несколько этапов своего развития. В последнее время наблюдаются новые перемены, обусловленные активным освоением альтернативных источников энергии. Успешное развитие этих направлений уже сегодня дает возможность использовать электричество в доме, полученное от индивидуальных бытовых генераторов независимо от центральных сетей.

Впрочем, и в этих отраслях есть определенные сложности. В первую очередь они связаны с финансовыми затратами на закупку и монтаж соответствующего оборудования — тех же солнечных панелей с аккумуляторами.

Но поскольку энергия, вырабатываемая от альтернативных источников, является полностью бесплатной, то перспективы дальнейшего продвижения этих областей сохраняют актуальность для разных категорий потребителей.

Источник: http://fb.ru/article/238655/otkuda-beretsya-elektrichestvo-istochniki-elektroenergii

Что такое электричество? Информация о электрическом токе

Электричество

Электричеством или электрическим током называют направленно движущийся поток заряженных частиц, например электронов. Также электричеством называется энергия, получаемая в результате такого движения заряженных частиц, и освещение, которое получают на основе этой энергии. Термин «электричество» был введён английским учёным Уильямом Гилбертом в 1600 году в его сочинении «О магните, магнитных телах и о большом магните-Земле».

Гилберт проводил опыты с янтарём, который в результате трения о сукно получил возможность притягивать другие лёгкие тела, то есть приобрёл некий заряд. А так как янтарь переводится с греческого как электрон, то наблюдаемое ученым явление получило название «электричество».

Электрический ток

Немного теории об электричестве

Электричество способно создавать вокруг проводников электрического тока или заряженных тел электрическое поле. Посредством электрического поля можно оказывать воздействие на другие тела, обладающие электрическим зарядом.fv

Электрические заряды, как всем известно, делятся на положительные и отрицательные. Этот выбор является условным, однако из-за того, что он уже давно сделан  исторически, то только поэтому за каждым зарядом закреплён определённый знак.

Тела, которые заряжены одним видом знака, отталкиваются друг от друга, а которые имеют разные заряды-наоборот притягиваются.

Во время движения заряженных частиц, то есть существования электричества, также помимо электрического поля возникает и магнитное поле. Это позволяет установить родство между электричеством и магнетизмом.

Интересно, что существуют тела, которые проводят электрический ток или тела с очень большим сопротивлением.. Это было открыто английским учёным Стивеном Греем в 1729 году.

Изучением электричества, наиболее полно и фундаментально, занимается такая наука, как термодинамика. Однако квантовые свойства электромагнитных полей и заряженных частиц изучаются уже совсем другой наукойm – квантовой термодинамикой, однако некоторую часть квантовых явлений можно довольно просто объяснить обычными квантовыми теориями.

Основы электричества

История открытия электричества

Для начала необходимо сказать, что нет такого учёного, который может считаться открывателем электричества, так как с древнейших времен до наших дней многие учёные изучают его свойства и узнают что-то новое об электричестве.

  • Первым, кто заинтересовался электричеством, был древнегреческий философ Фалес. Он обнаружил, что янтарь, который потереть о шерсть приобретает свойство притягивать другие лёгкие тела.
  • Затем другой древнегреческий ученый Аристотель занимался изучением некоторых угрей, которые поражали врагов, как мы теперь знаем, электрическим разрядом.
  • В 70 году нашей эры римский писатель Плиний изучал электрические свойства смолы.
  • Однако затем долгое время об электричестве не было получено никаких знаний.
  • И только в 16 веке придворный врач английской королевы Елизаветы 1 Вильям Жильбер занялся изучением электрических свойств и сделал ряд интересных открытий. После этого началось буквально «электрическое помешательство».
  • Только в 1600 году появился термин «электричество», введённый английским ученым Уильямом Гилбертом.
  • В 1650 году, благодаря бургомистру Магдебурга Отто фон Герике, который изобрёл электростатическую машину, появилась возможность наблюдать эффект отталкивания тел под действием электричества.
  • В 1729 году английский учёный Стивен Грей, проводя опыты по передачи электрического тока на расстояние, случайно обнаружил, что не все материалы обладают свойством одинаково передавать электричество.
  • В 1733 году французский ученый Шарль Дюфе открыл существование двух типов электричества, которые он назвал стеклянным и смоляным. Эти названия они получили из-за того, что выявлялись при трении стекла о шёлк и смолы о шерсть.
  • Первый конденсатор, то есть накопитель электричества, изобрёл голландец Питер ванн Мушенбрук в 1745 году. Этот конденсатор получил название Лейденская банка.
  • В 1747 году американец Б.Франклин создал первую в мире теорию электричества. По франклину электричество – это нематериальная жидкость или флюид. Другая заслуга Франклина перед наукой заключается в том, что он изобрёл громоотвод и с помощью него доказал, что молния имеет электрическую природу возникновения. Также он ввёл такие понятия как положительный и отрицательный заряды, но не открывал заряды. Это открытие сделал учёный Симмер, который доказал существование полюсов зарядов: положительного и отрицательного.
  • Изучение свойств электричества перешло к точным наукам после того как в 1785 году Кулон открыл закон о силе взаимодействия, происходящей между точечными электрическими зарядами, который получил название Закон Кулона.
  • Затем, в 1791 году итальянский учёный Гальвани публикует трактат о том, что в мышцах животных, при их движении возникает электрический ток.
  • Изобретение батареи другим итальянским учёным – Вольтом в 1800, привело к бурному развитию науки об электричестве и к последовавшему ряду важных открытий в этой области.
  • Затем последовали открытия Фарадея, Максвелла и Ампера, которые произошли всего за 20 лет.
  • В 1874 году российский инженер А.Н.Лодыгин получил патент, на изобретённую в 1872 году лампу накаливания с угольным стержнем. Затем в лампе стал использоваться стержень из вольфрама. А в 1906 году он продал свой патент компании Томаса Эдисона.
  • В 1888 году Герц регистрирует электромагнитные волны.
  • В 1879 году Джозеф Томсон открывает электрон, который является материальным носителем электричества.
  • В 1911 году француз Жорж Клод изобрёл первую в мире неоновую лампу.
  • Двадцатый век дал миру теорию Квантовой электродинамики.
  • В 1967 году был сделан еще один шаг на пути изучения свойств электричества. В этом году была создана теория электрослабых взаимодействий.
Читайте также  Сборка электрического щита своими руками

Однако это только основные открытия, сделанные учёными, и способствовавшие применению электричества. Но исследования продолжаются и сейчас, и каждый год происходят открытия в области электричества.

Все уверенны что самым великим и могущественным в плане открытий связанных с электричеством, был Никола Тесла. Сам он родился в Австрийской империи, теперь это территория Хорватии. В его багаже изобретений и научных работ: переменный ток, теория полей, эфир, радио, резонанс и многое другое. Некоторые допускают возможность что явление “Тунгусского метеорита”, это ни что иное как работа рук самого Николы Теслы, а именно взрыв огромной мощности на территории Сибири.

https://www.youtube.com/watch?v=jp7l8lbXbnk

Никола Тесла

Властелин мира — Никола Тесла

Электричество в природе

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б.Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Значение электричества в природе, как и в жизни человека достаточно огромно. Ведь именно молнии привели к синтезу аминокислот и, следовательно, к появлению жизни на земле.

Процессы в нервной системе человека и животных, например, движение и дыхание, происходят благодаря нервному импульсу, который возникает из-за электричества, существующего в тканях живых существ.

Электричество в природе

Некоторые виды рыб использую электричество, а точнее электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Такими рыбами являются: угри, миноги, электрические скаты и даже некоторые акулы.

Все эти рыбы имеют специальный электрический орган, который работает по принципу конденсатора, то есть накапливает достаточно большой электрический заряд, а затем разряжает его на жертву, прикоснувшуюся к такой рыбе. Также такой орган работает с частотой в несколько сотен герц и имеет напряжение несколько вольт. Сила тока электрического органа рыб меняется с возрастом: чем старше становится рыба, тем сила тока больше.

  Также благодаря электрическому току рыбы, обитающие на большой глубине, ориентируются в воде. Электрическое поле искажается под действие предметов, находящихся в воде. А эти искажения и помогают рыбам ориентироваться.

Солнечная электростанция

Смертельные опыты. Электричество

Получение электричества

Для получения электричества были специально созданы электростанции. На электростанциях при помощи генераторов, создается электроэнергия, которая после передается в места потребления по линиям электропередач. Электрический ток создается благодаря переходу механической или внутренней энергии в электрическую энергию. Электростанции делятся на: гидроэлектростанции или ГЭС, тепловые атомные, ветровые, приливные, солнечные и другие электростанции.

В гидроэлектростанциях турбины генератора, движущиеся под действием потока воды, вырабатывают электрический ток. В тепловых электростанциях или по-другому ТЭЦ электрический ток образуется также, но только вместо воды используется водяной пар, возникающий в процессе нагрева воды при сгорании топлива, например, угля.

Очень похожий принцип работы используется в атомной станции или АЭС. Только в АЭС используется другой вид топлива – радиоактивные материалы, например, уран или плутоний.

Происходит деление их ядер, благодаря чему выделяется очень большое количество теплоты, используемое для нагревания воды и превращения её в водяной пар, который затем поступает в турбину, вырабатывающую электрический ток.

Для работы таких станций требуется очень мало топлива. Так десять граммов урана вырабатывает такое же количество электричества, как и вагон угля.

Использование электричества

В наше время жизнь без электричества становится невозможной. Оно достаточно плотно вошло в жизнь людей двадцать первого века.

Часто электричество используют для освещения, например, используя электрическую или неоновую лампу, и для передачи всевозможной информации с помощью телефона, телевидения и радио, а в прошлом и телеграфа.

Также еще в двадцатом веке появилась новая область применения электричества: источник питания электрических двигателей трамваев, поездов в метро, троллейбусов и электричек. Электричество необходимо для работы различных бытовых приборов, которые значительно улучшают жизнь современного человека.

Сегодня электричество также применяется для получения качественных материалов и их обработки. С помощью электрогитар, работающих благодаря электричеству, можно создавать музыку. Также электричество продолжает использоваться, как гуманный способ умерщвления преступников (электрический стул), в странах, в которых разрешена смертная казнь.

Также учитывая то, что жизнь современного человека становится практически невозможной без компьютеров и сотовых телефонов, для работы которых необходимо электричество, то важность электричества будет достаточно сложно переоценить.

Электричество в мифологии и искусстве

В мифологии почти всех народов есть боги, которые способны метать молнии, то есть умеющие использовать электричество. Например, у греков таким богом был Зевс, у индусов-Агни, который умел превращаться в молнию, у славян – это Перун, а у скандинавских народов-Тор.

В мультфильмах также есть электричество. Так в диснеевском мультфильме Черный плащ есть антигерой Мегавольт, который способен повелевать электричеством. В японской анимации электричеством владеет покемон Пикачу.

Заключение

Изучение свойств электричества началось ещё в глубокой древности и продолжается до сих пор. Узнав, основные свойства электричества и, научившись их правильно использовать, люди значительно облегчили свою жизнь. Электричество также используется на заводах, фабриках и тд.

, то есть с помощью него можно получать другие блага. Значение электричества, как в природе, так и в жизни современного человека огромно.

Без такого электрического явления как молния на земле не зародилась бы жизнь, а без нервных импульсов, возникающих также благодаря электричеству, не возможно было бы обеспечить согласованную работу между всеми частями организмов.

Люди всегда были благодарны электричеству, даже когда не знали об его существовании. Они наделяли своих главных богов возможностью метать молнии.

Современный человек также не забывает об электричестве, но возможно ли о нем забыть? Он наделяет электрическими способностями героев мультфильмов и фильмов, строит электростанции, чтобы получать электричество и делает многое другое.

Таким образом, электричество величайший дар, данный нам самой природой и которым мы, к счастью, научились пользоваться.

Источник: https://www.13min.ru/nauka/chto-takoe-elektrichestvo-informaciya-o-elektricheskom-toke/

Электрический ток в проводниках

В проводниках имеются свободные носители зарядов, которые под действием силы электрического поля приходят в движение и создают электрический ток. В металлических проводниках носителями зарядов являются свободные электроны.

С повышением температуры хаотичное тепловое движение атомов препятствует направленному движению электронов и сопротивление проводника увеличивается.

При охлаждении и стремлении температуры к абсолютному нулю, когда прекращается тепловое движение, сопротивление металла стремится к нулю.

Электрический ток в жидкостях (электролитах) существует как направленное движение заряженных атомов (ионов), которые образуются в процессе электролитической диссоциации.Ионы перемещаются в сторону электродов, противоположных им по знаку и нейтрализуются, оседая на них. — Электролиз. Анионы — положительные ионы.

Перемещаются к отрицательному электроду — катоду. Катионы — отрицательные ионы. Перемещаются к положительному электроду — аноду. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

При нагревании сопротивление электролита уменьшается из-за увеличения числа молекул, разложившихся на ионы.

Электрический ток в газах — плазма. Электрический заряд переносится положительными или отрицательными ионами и свободными электронами, которые образуются под действием излучения.

Существует электрический ток в вакууме, как поток электронов от катода к аноду. Используется в электронно-лучевых приборах — лампах.

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению. Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры. С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает.

При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники — изоляторами.Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать.

При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле.

При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация. Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения.В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении.

В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I в полупроводнике складывается из электронного In и дырочного Ip токов.

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др.Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

Источник: http://tel-spb.ru/current/

Оставьте комментарий