Анодная защита от коррозии трубопроводов

Содержание

Электрохимическая защита

Анодная защита от коррозии трубопроводов

Электрохимическая защита – эффективный способ защиты готовых изделий от электрохимической коррозии.

В некоторых случаях невозможно возобновить лакокрасочное покрытие или же защитный оберточный материал, тогда целесообразно использовать электрохимическую защиту.

Покрытие  подземного трубопровода или же днища морского суда очень трудоемко и дорого возобновлять, иногда просто невозможно. Электрохимическая защита надежно защищает изделие от коррозии, предупреждая разрушение подземных трубопроводов, днищ судов, различных резервуаров и т.п.

Применяется электрохимическая защита в тех случаях, когда потенциал свободной коррозии находится в области интенсивного растворения основного металла либо перепассивации. Т.е. когда идет интенсивное разрушение металлоконструкции.

Суть электрохимической защиты

К готовому металлическому изделию извне подключается постоянный ток (источник постоянного тока или протектор). Электрический ток на поверхности защищаемого изделия создает  катодную поляризацию электродов микрогальванических пар. Результатом этого является то, что анодные участки на поверхности металла стают  катодными. А вследствии воздействия коррозионной среды идет разрушение не металла конструкции, а анода.

В зависимости от того, в какую сторону (положительную или отрицательную) смещается потенциал металла, электрохимическую защиту подразделяют на анодную и катодную.

Катодная защита от коррозии

Катодная электрохимическая  защита от коррозии применяется тогда, когда защищаемый металл не склонен к пассивации. Это один из основных видов защиты металлов от коррозии.

Суть катодной защиты состоит в приложении к изделию внешнего тока от отрицательного полюса, который поляризует катодные участки коррозионных элементов, приближая значение потенциала к анодным. Положительный полюс источника тока присоединяется к аноду.

  При этом коррозия защищаемой конструкции почти сводится к нулю. Анод же постепенно разрушается и его необходимо периодически менять.

Существует несколько вариантов катодной защиты: поляризация от внешнего источника электрического тока; уменьшение скорости протекания катодного процесса (например, деаэрация электролита); контакт с металлом, у которого потенциал свободной коррозии в данной среде более электроотрицательный (так называемая, протекторная защита).

Поляризация от внешнего источника электрического тока используется очень часто для защиты сооружений,  находящихся в почве, воде (днища судов и т.д.). Кроме того данный вид коррозионной защиты применяется для цинка, олова, алюминия и его сплавов, титана, меди и ее сплавов, свинца, а также высокохромистых, углеродистых, легированных (как низко так и высоколегированных) сталей.

Внешним источником тока служат станции катодной защиты, которые состоят из выпрямителя (преобразователь), токоподвода к защищаемому сооружению, анодных заземлителей, электрода сравнения и анодного кабеля.

Катодная защита применяется как самостоятельный, так и дополнительный вид коррозионной защиты.

Главным критерием, по которому можно судить о  эффективности катодной защиты, является защитный потенциал. Защитным называется потенциал, при котором скорость коррозии металла в определенных условиях окружающей среды принимает самое низкое (на сколько это возможно) значение.

В использовании катодной защиты есть свои недостатки. Одним из них является опасность перезащиты. Перезащита наблюдается при большом смещении потенциала защищаемого объекта в отрицательную сторону. При этом выделяется. В результате – разрушение защитных покрытий, водородное охрупчивание металла, коррозионное растрескивание.

Протекторная защита (применение протектора)

Разновидностью катодной защиты является протекторная. При  использовании протекторной защиты к защищаемому объекту подсоединяется металл  с более электроотрицательным потенциалом. При этом идет разрушение не конструкции, а протектора. Со временем протектор корродирует и его необходимо заменять  на новый.

https://www.youtube.com/watch?v=lMZulcgv5NY

Протекторная защита эффективна в случаях, когда между протектором и окружающей средой небольшое переходное сопротивление.

Каждый протектор имеет свой радиус защитного действия, который определяется максимально возможным расстоянием, на которое можно удалить протектор без потери защитного эффекта.  Применяется протекторная защита чаще всего тогда, когда невозможно или трудно и дорого подвести к конструкции ток.

Протекторы используются для защиты сооружений в нейтральных средах (морская или речная вода, воздух, почва и др.).

Для изготовления протекторов используют такие металлы: магний, цинк, железо, алюминий. Чистые металлы не выполняют в полной мере своих защитных функций, поэтому при изготовлении протекторов их  дополнительно легируют.

Железные протекторы изготавливаются из углеродистых сталей либо чистого железа.

Цинковые протекторы

Цинковые протекторы содержат около 0,001 – 0,005 %  свинца, меди и  железа, 0,1 – 0,5 % алюминия и 0,025 – 0,15 % кадмия. Цинковые проекторы применяют для защиты изделий от морской коррозии (в соленой воде). Если цинковый протектор эксплуатировать в слабосоленой, пресной воде либо почвах – он достаточно быстро  покрывается толстым слоем оксидов и гидроксидов.

Протектор магниевый

Сплавы для изготовления магниевых протекторов легируют 2 – 5 % цинка и 5 – 7 % алюминия. Количество в сплаве меди, свинца, железа, кремния, никеля не должно превышать десятых и сотых долей процента.

Протектор магниевый используют в слабосоленых, пресных водах, почвах. Протектор применяется с средах, где цинковые и алюминиевые протекторы малоэффективны. Важным аспектом является то, что протекторы из магния должны эксплуатироваться в среде с рН 9,5 – 10,5. Это объясняется высокой скоростью растворения магния и образованием на его поверхности труднорастворимых соединений.

Магниевый протектор опасен, т.к. является причиной водородного охрупчивания и коррозионного растрескивания  конструкций.

Алюминиевые протекторы

Алюминиевые протекторы содержат добавки, которые предотвращают образование окислов алюминия. В такие протекторы вводят до 8 % цинка, до 5 % магния и десятые-сотые доли кремния, кадмия, индия, таллия. Алюминиевые протекторы эксплуатируются в прибрежном шельфе и проточной морской воде.

Анодная защита от коррозии

Анодную электрохимическую защиту применяют для конструкций, изготовленных из титана, низколегированных нержавеющих, углеродистых сталей, железистых высоколегированных сплавов, разнородных пассивирующихся  металлов. Анодная защита применяется в хорошо электропроводных  коррозионных средах.

При анодной защите потенциал защищаемого металла смещается в более положительную сторону до достижения пассивного устойчивого состояния системы. Достоинствами  анодной электрохимической защиты является не только очень значительное замедление скорости коррозии, но и тот факт, что в производимый продукт и среду не попадают продукты коррозии.

Анодную защиту можно реализовать несколькими способами: сместив потенциал в положительную сторону при помощи источника внешнего электрического тока или введением в коррозионную среду окислителей (или элементов в сплав), которые   повышают эффективность катодного процесса на поверхности металла.

Анодная защита с применением окислителей по защитному механизму схожа с анодной поляризацией.

Если использовать пассивирующие ингибиторы с окисляющими свойствами, то защищаемая поверхность переходит в пассивное состояние под действием возникшего тока. К ним относятся бихроматы, нитраты и др. Но они достаточно сильно загрязняют окружающую технологическую среду.

При введении в сплав добавок (в основном легирование  благородным металлом) реакция восстановления деполяризаторов, протекающая на катоде,  проходит с меньшим перенапряжением, чем на защищаемом металле.

Если через защищаемую конструкцию пропустить электрический ток, происходит смещение потенциала в положительную сторону.

Установка для анодной электрохимической защиты от коррозии состоит из источника внешнего тока, электрода сравнения, катода и самого защищаемого объекта.

Для того, чтоб узнать, возможно ли для определенного объекта применить анодную электрохимическую защиту, снимают анодные поляризационные кривые, при помощи которых можно определить потенциал коррозии исследуемой конструкции в определенной коррозионной среде,  область устойчивой пассивности и плотность тока в этой области.

https://www.youtube.com/watch?v=l_pU59HIdlo

Для изготовления катодов используются металлы малорастворимые, такие, как высоколегированные нержавеющие стали, тантал, никель, свинец, платина.

Чтобы анодная электрохимическая защита в определенной среде была эффективна,  необходимо использовать легкопассивируемые металлы и сплавы, электрод сравнения и катод должны все время находится в растворе, качественно выполнены соединительные элементы.

Читайте также  Для чего нужен компенсатор на трубопроводе

Для каждого случая анодной защиты схема расположения катодов проектируется индивидуально.

Для того, чтоб анодная защита  была эффективной для определенного объекта, необходимо, чтоб он отвечал некоторым требованием:

– все сварные швы должны быть выполнены качественно;

– в технологической среде материал, из которого изготовлен защищаемый объект, должен переходить в пассивное состояние;

– количество воздушных карманов и щелей должно быть минимальным;

– на конструкции не должно присутствовать заклепочных соединений;

– в защищаемом  устройстве электрод сравнения и катод должны всегда находиться в растворе.

Для реализации анодной защиты в химической промышленности часто используют теплообменники и установки, имеющие цилиндрическую форму.

Электрохимическая анодная защита  нержавеющих сталей  применима для  производственных хранилищ серной кислоты, растворов на основе аммиака, минеральных удобрений, а также всевозможных сборников, цистерн, мерников.

Анодная защита может также применяться для предотвращения коррозионного разрушения ванн  химического никелирования, теплообменных установок в производстве искусственного волокна и серной кислоты.

Источник: https://www.okorrozii.com/elektrohimicheskaia-zaschita.html

Устройство электрохимзащиты для газопровода

Коррозия оказывает пагубное влияние на техническое состояние подземных трубопроводов, под ее воздействием нарушается целостность газопровода, появляются трещины. Для защиты от такого процесса применяют электрохимзащиту газопровода.

На состояние стальных трубопроводов оказывает влияние влажность почвы, ее структура и химический состав. Температура сообщаемого по трубам газа, блуждающие в земле токи, вызванные электрифицированным транспортом и климатические условия в целом.

Виды коррозии:

  • Поверхностная. Распространяется сплошным слоем по поверхности изделия. Представляет наименьшую опасность для газопровода.
  • Местная. Проявляется в виде язв, щелей, пятен. Наиболее опасный вид коррозии.
  • Усталостное коррозионное разрушение. Процесс постепенного накопления повреждений.

Механизм разрушения металлов при коррозии

Методы электрохимзащиты от коррозии:

  • пассивный метод;
  • активный метод.

Суть пассивного метода электрохимзащиты заключается в нанесении на поверхность газопровода специального защитного слоя, препятствующего вредному воздействию окружающей среды. Таким покрытием может быть:

  • битум;
  • полимерная лента;
  • каменноугольный пек;
  • эпоксидные смолы.

На практике редко получается нанести электрохимическое покрытие равномерно на газопровод. В местах зазоров с течением времени металл все же повреждается.

Активный метод электрохимзащиты или метод катодной поляризации заключается в создании на поверхности трубопровода отрицательного потенциала, предотвращающего утечку электричества, тем самым предупреждая появление коррозии.

Принцип действия электрохимзащиты

Чтобы защитить газопровод от коррозии, нужно создать катодную реакцию и исключить анодную. Для этого на защищаемом трубопроводе принудительно создается отрицательный потенциал.

Принципы построения локальной катодной защиты

В грунте размещают анодные электроды, подключают отрицательный полюс внешнего источника тока непосредственно к катоду – защищаемому объекту. Для замыкания электрической цепи, положительный полюс источника тока соединяется с анодом – дополнительным электродом, установленным в общей среде с защищаемым трубопроводом.

Анод в данной электрической цепи выполняет функцию заземления. За счет того, что анод имеет более положительный потенциал, чем металлический объект, происходит его анодное растворение.

Процесс коррозии подавляется под воздействием отрицательно заряженного поля защищаемого объекта. При катодной защите от коррозии, процессу порчи будет подвергается непосредственно анодный электрод.

Для увеличения срока эксплуатации анодов, их изготавливают из инертных материалов, устойчивых к растворению и другим воздействиям внешних факторов.

Станция электрохимзащиты

Станция электрохимзащиты – это устройство, которое служит источником внешнего тока в системе катодной защиты. Данная установка подключается к сети, 220 Вт и производит электричество с установленными выходными значениями.

Станция устанавливается на земле рядом с газопроводом. Она должна иметь степень защиты IP34 и выше, так как работает на открытом воздухе.

Станции катодной защиты могут иметь различные технические параметры и функциональные особенности.

Типы станций катодной защиты:

  • трансформаторные;
  • инверторные.

Трансформаторные станции электрохимзащиты постепенно отходят в прошлое. Они представляют собой конструкцию из трансформатора, работающего с частотой 50 Гц и тиристорного выпрямителя. Минусом таких устройств является несинусоидальная форма генерируемой энергии. Вследствие чего, на выходе происходит сильное пульсирование тока и снижается его мощность.

Инверторная станция электрохимзащиты имеет преимущество у трансформаторной. Ее принцип основан на работе высокочастотных импульсных преобразователей.

Особенностью инверторных устройств является зависимость размера трансформаторного блока от частоты преобразования тока. При более высокой частоте сигнала требуется меньше кабеля, снижаются тепловые потери.

В инверторных станциях, благодаря сглаживающим фильтрам, уровень пульсации производимого тока имеет меньшую амплитуду.

Электрическая цепь, которая приводит в работу станцию катодной защиты, выглядит так: анодное заземление – грунт – изоляция объекта защиты.

При установке станции защиты от коррозии учитываются следующие параметры:

  • положение анодного заземления (анод-земля);
  • сопротивление грунта;
  • электропроводимость изоляции объекта.

Установки дренажной защиты для газопровода

При дренажном способе электрохимзащиты источник тока не требуется, газопровод с помощью блуждающих в земле токов сообщается с тяговыми рельсами железнодорожного транспорта. Осуществляется электрическая взаимосвязь благодаря разности потенциалов железнодорожных рельсов и газопровода.

Схема электрических дренажей

Посредством дренажного тока создается смещение электрического поля находящегося в земле газопровода. Защитную роль в данной конструкции играют плавкие предохранители, а также автоматические выключатели максимальной нагрузки с возвратом, которые настраивают работу дренажной цепи после спада высокого напряжения.

Система поляризованных электродренажей осуществляется с помощью соединений вентильных блоков. Регулирование напряжения при такой установке осуществляется переключением активных резисторов. Если метод дал сбой, применяют более мощные электродренажи в виде электрохимзащиты, где анодным заземлителем служит железнодорожная рельса.

Установки гальванической электрохимзащиты

Использование протекторных установок гальванической защиты трубопровода оправданно, если вблизи объекта отсутствует источник напряжения – ЛЭП, или участок газопровода недостаточно внушителен по размерам.

Гальваническое оборудование служит для защиты от коррозии:

Гальваническая электрохимзащита

  • подземных металлических сооружений, не подсоединенных электрической цепью к внешним источникам тока;
  • отдельных незащищенных частей газопроводов;
  • частей газопроводов, которые изолированы от источника тока;
  • строящихся трубопроводов, временно не подключенных к станциям защиты от коррозии;
  • прочих подземных металлических сооружений (сваи, патроны, резервуары, опоры и др.).

Гальваническая защита сработает наилучшим образом в почвах с удельным электрическим сопротивлением, находящимся в пределах 50 Ом.

Установки с протяженными или распределенными анодами

При использовании трансформаторной станции защиты от коррозии ток распределяется по синусоиде. Это неблагоприятным образом сказывается на защитном электрическом поле. Происходит либо избыточное напряжение в месте защиты, которое влечет за собой высокий расход электроэнергии, либо неконтролируемая утечка тока, что делает электрохимзащиту газопровода неэффективной.

https://www.youtube.com/watch?v=j2-iaD6slgA

Схема анодной защиты трубопроводов

Практика использования протяженных или распределенных анодов помогает обойти проблему неравномерного распределения электричества. Включение распределенных анодов в схему электрохимзащиты газопровода способствует увеличению зоны защиты от коррозии и сглаживанию линии напряжения. Аноды при такой схеме размещаются в земле, на протяжении всего газопровода.

Регулировочное сопротивление или специальное оборудование обеспечивает изменение тока в необходимых пределах, изменяется напряжение анодного заземления, при помощи этого регулируется защитный потенциал объекта.

Если используется сразу несколько заземлителей, напряжение защитного объекта можно изменять, меняя количество активных анодов.

ЭХЗ трубопровода посредством протекторов основана на разности потенциалов протектора и газопровода, находящегося в земле. Почва в данном случае представляет собой электролит; металл восстанавливается, а тело протектора разрушается.

: Защита от блуждающих токов

Источник: https://promzn.ru/gazovaya-promyshlennost/elektrohimzashhita-dlya-gazoprovoda.html

Защита трубопроводов от коррозии: катодная, электрохимическая, протекторная

Защита трубопроводов от коррозии может выполняться посредством множества технологий, наиболее эффективным из которых является электрохимический метод, к которому и относится катодная защита.  Зачастую антикоррозийная катодная защита применяется комплексно, вместе с обработкой стальной конструкции изолирующими составами.

Магистральный наземный газопровод

В данной статье рассмотрена электрохимическая защита трубопроводов и особенно детально изучен ее катодный подвид. Вы узнаете, в чем заключается суть данного метода, когда его можно использовать и какое оборудование применяется для катодной защиты металлов.

Разновидности катодной защиты

Катодная защита стальных конструкций от коррозии была изобретена в 1820-х годах. Впервые метод был применен в кораблестроении — защитными анодными протекторами был обшит медный корпус судна, что значительно уменьшило скорость корродирования меди. Методика была взята на вооружение и начала активно развиваться, что сделало ее одним из наиболее эффективных методов противокоррозионной защиты на сегодняшний день.

Катодная защита металлов, согласно технологии выполнения, классифицируется на две разновидности:

  • метод №1 — к защищающейся конструкции подсоединяется внешний источник тока, при наличии которого само металлическое изделие выполняется роль катода, тогда как в качестве анодов выступают сторонние инертные электроды.
  • метод №2 — «гальваническая технология«: защищаемая конструкция контактирует с протекторной пластиной изготовленной из металла, имеющего больший электроотрицательный потенциал (к таким металлам относится цинк, алюминий, магний и их сплавы). Функцию анода в данном метода выполняют оба металла, тогда как электрохимическое растворение металла протекторной пластины обеспечивает протекание через защищаемую конструкцию необходимого минимума катодного тока. По истечению времени протекторная пластина полностью разрушается.
Читайте также  Пневмопробойники для бестраншейной прокладки трубопроводов

Метод №1 — наиболее распространенный. Это простая в реализации противокоррозионная технология, которая эффективно справляется  с многими разновидностями коррозии металлов:

  • межкристальная коррозия нержавеющей стали;
  • питтинговая коррозия;
  • растрескивание латуни из повышенного напряжения;
  • коррозия под воздействием блуждающих токов.

Подключение электродов катодной защиты к трубопроводу

В отличие от первого метода, пригодного для защиты больших по размеру конструкций (применяется для подземных и наземных трубопроводов), гальваническая электрохимзащита предназначена для применения с изделиями малых размеров.

Гальванический метод  широко распространен в США, в России он практически не используется, поскольку технология возведения трубопроводов в нашей стране не предусматривает обработку магистралей специальным изоляционным покрытием, которое является обязательным условием для гальванической электрохимзащиты.

Отметим, что без изоляционного покрытия значительно увеличивается коррозия стали под воздействием грунтовых вод, что особенно характерно для весеннего периода и осени. Зимой, после замерзания воды, коррозия от влаги существенно замедляется.

Суть технологии

Катодная противокоррозионная защита осуществляется посредством применения постоянного тока, который подается на защищаемую конструкцию от внешнего источника (чаще всего используются выпрямители, преобразующие переменный ток в постоянный) и делает ее потенциал отрицательным.

Сам объект, подключенный к постоянному току, является «минусом» — катодом, тогда как подведенное к нему анодное заземление, является «плюсом».

Ключевым условием эффективности катодной защиты является наличие хорошо проводимой электролитической среды, в качестве которого при защите подземных трубопроводов выступает грунт, тогда как электронный контакт достигается за счет использования металлических материалов с высокой проводимостью.

В процессе реализации технологии между электролитической средой (грунтом) и объектом постоянно поддерживается  требуемая разница потенциала тока, величина которой определяется с помощью высокоомного вольтметра.

Особенности катодной защиты трубопроводов

Коррозия — основная причина разгерметизации всех типов трубопроводов. Из-за повреждения металла ржавчиной на нем образуются разрывы, каверны и трещины, приводящие к разрушению стальной конструкции. Данная проблема особенно критична для подземных трубопроводов, которые постоянно пребывают в постоянном контакте с грунтовыми водами.

Катодная защита газопроводов от коррозии выполняется одним из вышеуказанных способов (посредством внешнего выпрямителя либо гальваническим методом). Технология в, данном случае, позволяет уменьшить скорость окисления и растворения металла, из которого изготовлен трубопровод, что достигается за счет смещения его естественного коррозийного потенциала в отрицательную сторону.

Посредством практический испытаний было выяснено, что потенциал катодной поляризации металлов, при котором замедляются все коррозийные процессы, равен -0.85 В, тогда как у подземных трубопроводов в естественном режиме он составляет -0.55 В.

Чтобы противокоррозионная защита было эффективной, необходимо посредством постоянного тока снизить катодный потенциал металла, из которого изготовлен трубопровод, на -0.3 В. В таком случае скорость корродирования стали не превышает 10 микрометров в течении года.

Схема катодной защиты трубопровода

Катодная защита — наиболее эффективный метод защиты подземных трубопроводов от блуждающих токов. Под понятием блуждающих токов подразумевается электрический заряд, который попадает в землю в результате работы точек заземления ЛЭП, громоотводов либо движения поездов по железнодорожным магистралям. Точное время и место появления блуждающих токов выяснить невозможно.

Коррозийное воздействие блуждающих токов на металл происходит в случае, если металлическая конструкция имеет позитивный потенциал относительно электролита( для подземных трубопроводов электролитом выступает грунт). Катодная защита же делает потенциал металла подземных трубопроводов отрицательным, что устраняет риск их окисления под воздействием блуждающих токов.

Технология применения внешнего источника тока для катодной защиты подземных трубопроводов предпочтительна. Ее преимущества — неограниченный энергоресурс, способный преодолевать удельное сопротивление грунта.

В качестве источника тока противокоррозионная защита используется воздушные линии электропередач мощностью 6 и 10 кВт, если же на территории ЛЭП отсутствуют, могут применяться мобильные генераторы, работающие на газу и дизтопливе.

Оборудование для катодной защиты

Для противокоррозионной защиты подземных трубопроводов применяется специальное оборудование — станции катодной защиты (СКЗ), состоящие из следующих узлов:

  • заземление (анод);
  • источник постоянного тока;
  • пункт управления, контроля и измерений;
  • соединительные кабели и провода.

Одна СКЗ, подключенная к электросети либо к автономному генератору, может выполнять катодную защиту сразу нескольких рядом расположенных магистралей подземных трубопроводов. Регулировка тока может выполняться вручную (посредством замены обмотки на трансформаторе) либо в автоматическом режиме (если система укомплектована тиристорами).

Среди станций катодной защиты, применяемых в отечественной промышленности, наиболее технологичной установкой считается Минерва-3000 (спроектированная инженерами из Франции по заказу Газпрома). Мощности данной СКЗ достаточно для эффективной защиты 30 км подземного трубопровода.

Схема станции катодной защиты

К преимуществам установки относится:

  • повышенная мощность;
  • функция восстановления после перегрузок (обновление происходит за 15 секунд);
  • наличие систем цифрового регулирования для контроля за рабочими режимами;
  • полная герметичность ответственных узлов;
  • возможность подключения оборудования для удаленного контроля.

Также широко востребованными в отечественном строительстве являются установки АСКГ-ТМ, в сравнении с Минервой-3000 они имеют уменьшенную мощность (1-5 кВт), однако в стоковой комплектации система оборудована телеметрическим комплексом, который в автоматическом режиме контролирует работу СКЗ и имеет возможность дистанционного управления.

Станции катодной защиты Минерва-3000 и АСКГ-ТМ требуют питания от электросети мощностью 220 В. Удаленное управление оборудованием выполняется посредством встроенных GPRS модулей. СКЗ имеют достаточно больше габариты — 50*40*90 см. и вес — 50 кг. Минимальный срок службы устройств составляет 20 лет.

Источник: http://trubypro.ru/vidy/vodoprovodnye/katodnaya-zaschita.html

Варианты катодной защиты трубопроводов – преимущества и недостатки способов

До сих пор при обустройстве протяжённых промышленных трубопроводов наиболее востребованным материалом изготовления труб является сталь.

Обладая множеством замечательных свойств, таких как механическая прочность, способность функционировать при больших значениях внутренних давления и температуры и стойкость к сезонным изменениям погоды, сталь имеет и серьёзный недостаток: склонность к коррозии, приводящей к разрушению изделия и, соответственно, неработоспособности всей системы.

Один из способов защиты от этой угрозы – электрохимический, включающий катодную и анодную защиту трубопроводов; об особенностях и разновидностях катодной защиты будет рассказано ниже.

Определение электрохимической защиты

Электрохимическая защита трубопроводов от коррозии – процесс, осуществляемый при воздействии постоянного электрического поля на предохраняемый объект из металлов или сплавов. Поскольку обычно доступен для работы переменный ток, используются специальные выпрямители для преобразования его в постоянный.

В случае катодной защиты трубопроводов защищаемый объект путём подачи на него электромагнитного поля приобретает отрицательный потенциал, то есть делается катодом.

Соответственно, если ограждаемый от коррозии отрезок трубы становится «минусом», то заземление, подводящееся к нему, – «плюсом» (т.е. анодом).

Антикоррозионная защита по такой методике невозможна без присутствия электролитической, с хорошей проводимостью, среды. В случае обустройства трубопроводов под землёй её функцию выполняет грунт. Контакт же электродов обеспечивается путём применения хорошо проводящих электрический ток элементов из металлов и сплавов.

В ходе протекания процесса между средой-электролитом (в данном случае грунтом) и защищаемым от коррозии элементом возникает постоянная разница потенциалов, значение которой контролируется при помощи высоковольтных вольтметров.

Классификация методик электрохимической катодной защиты

Такой способ предупреждения коррозии был предложен в 20-х годах XIX века и поначалу использовался в судостроении: медные корпуса кораблей обшивались протекторами-анодами, значительно снижающими скорость корродирования металла.

После того, как была установлена эффективность новой технологии, изобретение стало активно применяться в других областях промышленности. Через некоторое время оно было признано одним из самых эффективных способов защиты металлов.

В настоящее время используется два основных типа катодной защиты трубопроводов от коррозии:

  1. Самый простой способ: к металлическому изделию, требующему предохранения от коррозии, подводится внешний источник электрического тока. В таком исполнении сама деталь приобретает отрицательный заряд и становится катодом, роль же анода выполняют инертные, не зависящие от конструкции, электроды.
  2. Гальванический метод. Нуждающаяся в защите деталь соприкасается с защитной (протекторной) пластиной, изготавливаемой из металлов с большими значениями отрицательного электрического потенциала: алюминия, магния, цинка и их сплавов. Анодами в этом случае становятся оба металлических элемента, а медленное электрохимическое разрушение пластины-протектора гарантирует поддержание в стальном изделии требуемого катодного тока. Через более или менее долгое время, в зависимости от параметров пластины, она растворяется полностью.

Характеристики первого метода

Этот способ ЭХЗ трубопроводов, в силу простоты, наиболее распространён. Применятся он для предохранения крупных конструкций и элементов, в частности, трубопроводов подземного и наземного типов.

Читайте также  Маркировка арматуры устанавливаемой на трубопроводах

Методика помогает противостоять:

  • питтинговой коррозии;
  • коррозии из-за присутствия в зоне расположения элемента блуждающих токов;
  • коррозии нержавеющей стали межкристального типа;
  • растрескиванию латунных элементов вследствие повышенного напряжения.

Характеристики второго метода

Эта технология предназначается, в отличие от первой, в том числе для защиты изделий небольших размеров. Методика наиболее популярна в США, в то время как в Российской Федерации используется редко. Причина в том, что для проведения гальванической электрохимическая защита трубопроводов необходимо наличие на изделии изоляционного покрытия, а в России магистральные трубопроводы таким образом не обрабатываются.

Особенности ЭХЗ трубопроводов

Главной причиной выхода трубопроводов из строя (частичной разгерметизации или полного разрушения отдельных элементов) является коррозия металла.

В результате образования на поверхности изделия ржавчины на его поверхности появляются микроразрывы, раковины (каверны) и трещины, постепенно приводящие к выходу системы из строя.

Особенно эта проблема актуальна для труб, пролегающих под землёй и всё время соприкасающихся с грунтовыми водами.

https://www.youtube.com/watch?v=8dtJeWzGiQs

Принцип действия катодной защиты трубопроводов от коррозии предполагает создание разности электрических потенциалов и реализуется двумя вышеописанными способами.

После проведения измерений на местности было установлено, что необходимый потенциал, при котором замедляется любой коррозионный процесс, составляет –0,85 В; у находящихся же под слоем земли элементов трубопровода его естественное значение равно –0,55 В.

Чтобы существенно замедлить процессы разрушения материалов, нужно добиться снижения катодного потенциала защищаемой детали на 0,3 В. Если добиться этого, скорость коррозии стальных элементов не будет превышать значений 10 мкм/год.

Одну из самых серьёзных угроз металлическим изделиям представляют блуждающие токи, то есть электрические разряды, проникающие в грунт вследствие работы заземлений линий энергопередачи (ЛЭП), громоотводов или передвижения по рельсам поездов. Невозможно определить, в какое время и где они проявятся.

Разрушающее воздействие блуждающих токов на стальные элементы конструкций проявляется, когда эти детали обладают положительным электрическим потенциалом относительно электролитической среды (в случае трубопроводов – грунта). Катодная методика сообщает защищаемому изделию отрицательный потенциал, в результате чего опасность коррозии из-за этого фактора исключается.

Оптимальным способом обеспечения контура электрическим током является использование внешнего источника энергии: он гарантирует подачу напряжения, достаточного для «пробивания» удельного сопротивления грунта.

Обычно в роли такого источника выступают воздушные линии энергопередачи с мощностями 6 и 10 кВт. В случае отсутствия на участке пролегания трубопровода ЛЭП следует использовать генераторы мобильного типа, функционирующие на газе и дизельном топливе.

Что нужно для катодной электрохимической защиты

Для обеспечения снижения коррозии на участках пролегания трубопроводов используются особые приспособления, называемые станциями катодной защиты (СКЗ).

Эти станции включают в себя следующие элементы:

  • заземление, выступающее в роли анода;
  • генератор постоянного тока;
  • пункт контроля, измерений и управления процессом;
  • соединительные приспособления (провода и кабели).

Станции катодной защиты вполне эффективно выполняют основную функцию, при подключении к независимому генератору или ЛЭП защищая одновременно несколько расположенных поблизости участков трубопроводов.

Регулировать параметры тока можно как вручную (заменяя трансформаторные обмотки), так и в автоматизированном режиме (в случае, когда в контуре имеются тиристоры).

Наиболее совершенной среди применяемых на территории РФ станций катодной защиты признаётся «Минерва-3000» (проект СКЗ по заказу «Газпрома» был создан французскими инженерами). Одна такая станция позволяет обеспечить безопасность около 30 км пролегающего под землей трубопровода.

Плюсы «Минервы-3000»:

  • высокий уровень мощности;
  • возможность быстрого восстановления после возникновения перегрузок (не более 15 секунд);
  • оснащённость необходимыми для контроля рабочих режимов узлами цифровой регулировки системы;
  • абсолютно герметичные ответственные узлы;
  • возможность контролировать функционирование установки удалённо, при подключении специального оборудования.

Вторая наиболее популярная в России СКЗ – «АСКГ-ТМ» (адаптивная телемеханизированная станция катодной защиты). Мощность таких станций меньше, чем упомянутых выше (от 1 до 5 кВт), но их возможности автоматического контроля работы улучшены за счёт наличия в исходной комплектации телеметрического комплекса с дистанционным управлением.

Обе станции требуют источника напряжения мощностью 220 В, управляются с помощью модулей GPRS и характеризуются достаточно скромными габаритами – 500×400×900 мм при весе 50 кг. Срок эксплуатации СКЗ – от 20 лет.

Источник: https://trubaspec.com/montazh-i-remont/varianty-katodnoy-zashchity-truboprovodov-preimushchestva-i-nedostatki-sposobov.html

Электрохимическая защита трубопроводов от коррозии — электронный каталог продукции,разработка мобильных приложений,АОС,автоматизированные обучающие системы,семинары по нефтегазовой тематике,разработка СТУ,СТУ

Электрохимическая защита от коррозии состоит из катодной и дренажной защиты. Катодная защита трубопроводов осуществляется двумя основными методами: применением металлических анодов-протекторов (гальванический протекторный метод) и применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс – с анодным заземлением (электрический метод).

Рис. 1. Принцип работы катодной защиты

Гальваническая протекторная защита от коррозии

Наиболее очевидным способом осуществления электрохимической защиты металлического сооружения, имеющего непосредственный контакт с электролитической средой, является метод гальванической защиты, в основу которого положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы.

Таким образом, если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом-протектором и будет разрушаться, защищая металл с менее отрицательным потенциалом. Протекторы, по существу, служат портативными источниками электроэнергии.

В качестве основных материалов для изготовления протекторов используются магний, алюминий и цинк. Из сопоставления свойств магния, алюминия и цинка видно, что из рассматриваемых элементов магний обладает наибольшей электродвижущей силой.

В то же время одной из наиболее важных практических характеристик протекторов является коэффициент полезного действия, показывающий долю массы протектора, использованной на получение полезной электрической энергии в цепи. К.П.Д.

протекторов, изготовленных из магния и магниевых сплавов, редко превышают 50 % в, в отличие от протекторов на основе Zn и Al с К.П.Д. 90 % и более.

Рис. 2. Примеры магниевых протекторов

Обычно протекторные установки применяются для катодной защиты трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями, отдельных участков трубопроводов, а также резервуаров, стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай, и других сосредоточенных объектов.

https://www.youtube.com/watch?v=ZTmNyBKVcJ0

В то же время протекторные установки очень чувствительны к ошибкам в их размещении и комплектации. Неправильный выбор или размещение протекторных установок приводит к резкому снижению их эффективности.

Катодная защита от коррозии

Наиболее распространенный метод электрохимической защиты от коррозии подземных металлических сооружений – это катодная защита, осуществляемая путем катодной поляризации защищаемой металлической поверхности. На практике это реализуется путем подключения защищаемого трубопровода к отрицательному полюсу внешнего источника постоянного тока, называемого станцией катодной защиты.

Положительный полюс источника соединяют кабелем с внешним дополнительным электродом, сделанным из металла, графита или проводящей резины. Этот внешний электрод размещается в той же коррозионной среде, что и защищаемый объект, в случае подземных промысловых трубопроводов, в почве.

Таким образом, образуется замкнутая электрическая цепь: дополнительный внешний электрод – почвенный электролит – трубопровод – катодный кабель – источник постоянного тока – анодный кабель. В составе данной электрической цепи трубопровод является катодом, а дополнительный внешний электрод, присоединенный к положительному полюсу источника постоянного тока, становится анодом. Данный электрод называется анодным заземлением.

Отрицательно заряженный полюс источника тока, присоединенный к трубопроводу, при наличии внешнего анодного заземления катодно поляризует трубопровод, при этом потенциал анодных и катодных участков практически выравнивается.

Таким образом, система катодной защиты состоит из защищаемого сооружения, источника постоянного тока (станции катодной защиты), анодного заземления, соединительных анодной и катодной линий, окружающей их электропроводной среды (почвы), а также элементов системы мониторинга – контрольно-измерительных пунктов.

Дренажная защита от коррозии

Дренажная защита трубопроводов от коррозии блуждающими токами  осуществляется путем направленного отвода этих токов к источнику или в землю. Установка дренажной защиты может быть нескольких видов: земляной, прямой, поляризованный и усиленный дренажи.

Рис. 3. Станция дренажной защиты

Земляной дренаж осуществляется заземлением трубопроводов дополнительными электродами в местах их анодных зон, прямой дренаж – созданием электрической перемычки между трубопроводом и отрицательным полюсом источника блуждающих токов, например рельсовой сетью электрифицированной железной дороги. Поляризованный дренаж в отличие от прямого обладает только односторонней проводимостью, поэтому при появлении положительного потенциала на рельсах дренаж автоматически отключается. В усиленном дренаже дополнительно в цепь включается преобразователь тока, позволяющий увеличивать дренажный ток.

P.S. Обзор технических решений по ЭХЗ других металлических конструкций и сооружений можно прочитать здесь.

Скачайте наше специализированное учебно-справочное приложение «Защита от коррозии»

Источник: http://transenergostroy.ru/blog/elektrohimicheskaya_zashhita_truboprovodov_ot_korrozii.html

Оставьте комментарий